

ST98-2013 Alberta's Energy Reserves 2012 and Supply/Demand Outlook 2013–2022

ACKNOWLEDGEMENTS

The following ERCB staff contributed to this report:

Principal Authors:

Reserves: Michael Teare, Andy Burrowes, Cathy Baturin-Pollock, Dean Rokosh, Curtis Evans, and Rick Marsh

Supply/Demand and Economics: Banafsheh Ashrafi, Charles Tamblyn, Shimpei Ito, Andrea Willwerth, Mussie Yemane, Joseph Fong, Marie-Anne Kirsch, and Carol Crowfoot

Editors: Rick Marsh, Kevin Parks, and Carol Crowfoot

Data: Debbie Giles, Glen Tsui, and Judy Van Horne

Production: Jennifer Wagner, Nicole Dunn, Aaron Dalton, Sarah Hamza, Karen Logan, and Robert de Grace **Communications Advisor:** Bob Curran

Cover Photo: Lynn Mason

Coordinator: Rick Marsh

For general inquiries, contact the ERCB's Energy Statistics Office at EnergyStatistics@ercb.ca. For inquiries regarding reserves, contact Rick Marsh at 403-297-8218 or Andy Burrowes at 403-297-8566. For inquiries regarding supply/demand, contact Marie-Anne Kirsch at 403-297-8476.

ENERGY RESOURCES CONSERVATION BOARD

ST98-2013: Alberta's Energy Reserves 2012 and Supply/Demand Outlook 2013-2022

ISSN 1910-4235

May 2013

The following related documents are also available from ERCB Information Services (telephone: 403-297-8311; when connected, press 2):

- CD with detailed data tables for crude oil and natural gas, as well as map of Designated Fields, Oil Sands Areas, and Development Entities, \$546
- CD with Field and Pool Code Conversion File, \$459
- CD with Gas Pool Reserve File (ASCII format), \$3095
- CD with Oil Pool Reserves File (ASCII format), \$1834
- Map-90: Map of Designated Fields, Oil Sands Areas, and Development Entities: 60 x 101 cm, \$63;
 33 x 54 cm, \$29

Published by

Energy Resources Conservation Board Suite 1000, 250 – 5 Street SW Calgary, Alberta T2P 0R4

Toll-free: 1-855-297-8311 Fax: 403-297-7040 Website: www.ercb.ca

Contents

ov	/ERVIEW	1
	Summary of Energy Reserves, Production, and Demand in Alberta	1
	Reserves	2
	Production	2
	Energy Demand	
	Alberta Hydrocarbon Production within the Canadian Context	4
	Oil and Gas Prices and Alberta's Economy	6
	Crude Oil Prices – 2012	6
	Crude Oil Prices – Forecast	7
	Natural Gas Prices – 2012	7
	Natural Gas Prices – Forecast	7
	Alberta's Economy – 2012	
	Alberta's Economy – Forecast	
	Commodity Discussion	9
	Crude Bitumen and Crude Oil	9
	Natural Gas	
	Ethane and Other Natural Gas Liquids	
	Sulphur	
	Coal	
	Electricity	
	Oil and Gas Activity	
	Crude Oil	
	Natural Gas	
1	ECONOMICS	1-1
	1.1 Energy Prices	1-1
	1.1.1 World Oil Market	
	1.1.2 International Oil Prices	
	1.1.3 North American Crude Oil Prices	
	1.1.4 North American Natural Gas Prices	
	1.2 Oil and Gas Drilling and Completion Costs in Alberta	
	1.3 Economic Performance	
	1.3.1 Alberta and Canada	
	1.3.2 The Alberta Economy in 2012 and the Economic Outlook	
2		2-1
	2.1 Geological Framework of Alberta	2-1

		2.1.1 Western Canada Sedimentary Basin	2-1
		2.1.2 Alberta's Petroleum Systems	2-4
		2.1.3 Energy Resource Occurrences – Plays, Deposits, and Pools	2-6
	2.2	Resource Endowment of Alberta's Energy Resources	2-6
		2.2.1 Shale Hydrocarbons	2-7
	2.3	Resource Appraisal Methodologies	
		2.3.1 Resource Estimation	
		2.3.2 Reserves Determination	
		2.3.3 Ultimate Potential	
	2.4	Resources and Reserves Classification System	2-10
3	CR	UDE BITUMEN	
	3.1	Reserves of Crude Bitumen	
		3.1.1 Provincial Summary	
		3.1.2 Initial In-Place Volumes of Crude Bitumen	
		3.1.3 Established Reserves	
		3.1.4 Ultimate Potential of Crude Bitumen	
	3.2	Supply of and Demand for Crude Bitumen	
		3.2.1 Crude Bitumen Production – 2012	
		3.2.2 Crude Bitumen Production – Forecast	
		3.2.3 Supply Costs	
		3.2.4 Pipelines	
		3.2.5 Demand for Upgraded Bitumen and Nonupgraded Bitumen	
4	CR	UDE OIL	4-1
	4.1	Reserves of Crude Oil	4-1
		4.1.1 Provincial Summary	4-1
		4.1.2 In-Place Resources	4-1
		4.1.3 Established Reserves	4-1
		4.1.4 Ultimate Potential	4-9
	4.2	Supply of and Demand for Crude Oil	4-9
		4.2.1 Crude Oil Production – 2012	4-9
		4.2.2 Crude Oil Production – Forecast	4-17
		4.2.3 Crude Oil Demand	
5	NA	TURAL GAS	
	5.1	Reserves of Natural Gas	5-1
		5.1.1 Provincial Summary	

		5.1.3 Established Reserves of Conventional Natural Gas	
		5.1.4 Established Reserves of CBM	
		5.1.5 Shale Gas Resources	
		5.1.6 Ultimate Potential of Conventional Natural Gas	
		5.1.7 Ultimate CBM Gas in Place	
	5.2	Supply of and Demand for Natural Gas	
		5.2.1 Marketable Natural Gas Production – 2012	
		5.2.2 Natural Gas Connections – 2012	
		5.2.3 Production Trends	
		5.2.4 Production Characteristics of New Connections	
		5.2.5 Supply Costs	5-39
		5.2.6 Marketable Natural Gas Production – Forecast	
		5.2.7 Commercial Natural Gas Storage	
		5.2.8 Alberta Natural Gas Demand	5-47
6	NA	TURAL GAS LIQUIDS	6-1
	6.1	Reserves of Natural Gas Liquids	
		6.1.1 Provincial Summary	
		6.1.2 Ethane	
		6.1.3 Other Natural Gas Liquids	
		6.1.4 Ultimate Potential	
	6.2	Supply of and Demand for Natural Gas Liquids	
		6.2.1 Ethane and Other Natural Gas Liquids Production – 2012	
		6.2.2 Ethane and Other Natural Gas Liquids – Recent Developments	6-10
		6.2.3 Ethane and Other Natural Gas Liquids Production – Forecast	
		6.2.4 Demand for Ethane and Other Natural Gas Liquids	6-14
7	SU	LPHUR	
	7.1	Reserves of Sulphur	
		7.1.1 Provincial Summary	7-1
		7.1.2 Sulphur from Natural Gas	7-1
		7.1.3 Sulphur from Crude Bitumen	
		7.1.4 Sulphur from Crude Bitumen Reserves under Active Development	7-4
	7.2	Supply of and Demand for Sulphur	7-4
		7.2.1 Sulphur Production – 2012	7-4
		7.2.2 Sulphur Production – Forecast	7-6
		7.2.3 Sulphur Demand	7-6

8	CO	AL	8-1
	8.1	Reserves of Coal	8-1
		8.1.1 Provincial Summary	8-1
		8.1.2 In-Place Resources	8-2
		8.1.3 Established Reserves	8-6
		8.1.4 Ultimate Potential	8-6
	8.2	Supply of and Demand for Marketable Coal	8-7
		8.2.1 Coal Production – 2012	8-8
		8.2.2 Coal Production – Forecast	8-8
		8.2.3 Coal Demand	8-10

Appendices

Α	TERMINOLOGY AND CONVERSION FACTORS	A-1
	A.1 Terminology	A-1
	A.2 PSAC Areas	A-7
	A.3 Symbols	A-8
	A.4 Conversion Factors	A-8
в	SUMMARY OF CRUDE BITUMEN, CONVENTIONAL CRUDE OIL, NATURAL GAS RESERVES,	AND
	NATURAL GAS LIQUIDS	B-1
С	CD – BASIC DATA TABLES	C-1
	C.1 Basic Data Tables	C-1
	C.2 Crude Oil Reserves and Basic Data	C-1
	C.3 Natural Gas Reserves and Basic Data	C-1
	C.4 Crude Bitumen Resources and Basic Data	C-2
D	DRILLING ACTIVITY IN ALBERTA	D-1
Е	CRUDE BITUMEN PAY THICKNESS AND GEOLOGICAL STRUCTURE CONTOUR MAPS	E-1
	E.1 Regional Map	E-1
	E.1.1 Sub-Cretaceous Unconformity	E-1
	E.2 Peace River Oil Sands Area	E-1
	E.2.1 Peace River Bluesky-Gething Deposit	E-1
	E.3 Athabasca Oil Sands Area	E-1
	E.3.1 Athabasca Grosmont Deposit	E-1
	E.3.2 Athabasca Wabiskaw-McMurray Deposit	E-5
	E.3.3 Athabasca Upper, Middle, and Lower Grand Rapids Deposits	E-5
	E.3.4 Athabasca Nisku Deposit	E-5

E.4	Cold Lake Oil Sands Area	.E-11
	E.4.1 Sub-Cretaceous Unconformity	.E-11
	E.4.2 Cold Lake Wabiskaw-McMurray Deposit	.E-11
	E.4.3 Cold Lake Clearwater Deposit	.E-11
	E.4.4 Cold Lake Upper and Lower Grand Rapids Deposits	.E-11

F	SUMMARY OF ALBERTA'S SHALE- AND SILTSTONE-HOSTED	
	HYDROCARBON RESOURCE POTENTIAL	F-1

Tables

0\	/F	R\	/16	=v	v
0		1/1	/ 11	- •	v

1	Reserves, resources, and production summary, 2012	
ECO	NOMICS	
1.1	Alberta wellhead annual average crude oil prices	
1.2	Alberta median well depths by PSAC area, 2012	1-14
1.3	Major Alberta economic indicators, 2012–2022	1-17
1.4	Value of annual Alberta energy resource production	
RESC		
2.1	Summary of estimates of Alberta shale- and siltstone-hosted hydrocarbon resource endowment	2-9
CRU	DE BITUMEN	
R3.1	In-place volumes and established reserves of crude bitumen	
R3.2	Reserve and production change highlights	
R3.3	Initial in-place volumes of crude bitumen as of December 31, 2012	
R3.4	Mineable crude bitumen reserves in areas under active development as of December 31, 2012	
R3.5	In situ crude bitumen reserves in areas under active development as of December 31, 2012	
S3.1	Upgraded bitumen production in 2012	
S3.2	Surface mined bitumen projects	
S3.3	In situ crude bitumen projects	
S3.4	Upgraded bitumen projects	
S3.5	Supply cost project data, 2012	
S3.6	Alberta upgraded and nonupgraded bitumen pipelines	
S3.7	Removal pipelines	
S3.8	Proposed removal pipeline projects	
CRU	DE OIL	
R4.1	Reserves and production change highlights	
R4.2	Breakdown of changes in crude oil initial established reserves	
R4.3	Major oil reserves changes, 2012	
R4.4	Conventional crude oil reserves by recovery mechanism as of December 31, 2012	
NATU	IRAL GAS	
R5.1	Reserve and production changes in marketable conventional gas	
R5.2	CBM reserve and production change highlights	
R5.3	Major natural gas reserve changes, 2012	
R5.4	Distribution of natural gas reserves by pool size, 2012	

R5.5	Pool reserves as of December 31, 2012	. 5-9
R5.6	Commingled pool reserves within development entities as of December 31, 2012	. 5-9

Distribution of sweet and sour gas reserves, 2012	5-12
Distribution of sour gas reserves by H ₂ S content, 2012	5-12
CBM gas in place and reserves by deposit play area, 2012	5-18
Remaining ultimate potential of marketable conventional gas, 2012	5-26
Ultimate CBM gas in place	5-26
Conventional marketable natural gas volumes	5-27
Conventional gas connections by well type	5-29
CBM and CBM hybrid connections by well type and CBM play area	5-31
Shale gas connections by well type	5-31
Natural gas supply costs for PSAC areas and CBM play areas	5-39
Forecast initial productivity for new gas wells	5-43
Forecast decline rates for new gas wells	5-43
Forecast number of new gas well connections	5-43
Commercial natural gas storage pools as of December 31, 2012	5-47
Estimate of gas reserves available for inclusion in removal permits as of December 31, 2012	5-49
Average use rates of purchased gas for oil sands operations, 2012	5-51
	Distribution of sour gas reserves by H ₂ S content, 2012

NATURAL GAS LIQUIDS

R6.1	Established reserves and production change highlights of extractable NGLs	.6-2
R6.2	Reserves of NGLs as of December 31, 2012	.6-2
S6.1	Straddle plants in Alberta, 2012	.6-8
S6.2	Ethane extraction volumes at gas plants in Alberta, 2012	.6-9
S6.3	IEEP projects as of December 31, 2012	6-11

SULPHUR

R7.1	Reserve and production change highlights	7-2
R7.2	Remaining established reserves of sulphur from natural gas as of December 31, 2012	7-3
S7.1	Sulphur production from gas processing plants	7-5

COAL

R8.1	Established initial in-place resources and remaining reserves of raw coal in Alberta as of December 31, 2012	8-2
R8.2	Established resources and reserves of raw coal under active development as of December 31, 2012	.8-7
R8.3	Ultimate in-place resources and ultimate potential	. 8-8
S8.1	Alberta coal mines and marketable coal production in 2012	.8-9

SUMMARY OF CRUDE BITUMEN, CONVENTIONAL CRUDE OIL, NATURAL GAS RESERVES, AND

NATURAL GAS LIQUIDS

B.1	Initial in-place resources of crude bitumen by deposit	B-1
B.2	Basic data of crude bitumen deposits	B - 2
B.3	Conventional crude oil reserves as of each year-end	B-10
B.4	Summary of marketable natural gas reserves as of each year-end	B-12

DRILLING ACTIVITY IN ALBERTA		
B.7	Remaining raw reserves of natural gas liquids as of December 31, 2012	B-20
B.6	Remaining raw ethane reserves as of December 31, 2012	B-18
B.5	Natural gas reserves of multifield pools, 2012	B- 14

D.1	Development and exploratory wells, pre-1972–2012; number drilled annually	D-1
D.2	Development and exploratory wells, pre-1972-2012; kilometres drilled annually	D-3

Figures

OVERVIEW

1	Total primary energy production in Alberta	2
2	Primary energy demand in Alberta	4
3	Primary energy removals from Alberta	5
4	Marketable natural gas percentage of production – Canada	5
5	Oil and equivalent percentage of production – Canada	6
6	Alberta mined bitumen and upgraded bitumen (SCO) production and crude oil price	9
7	Alberta in situ bitumen production and heavy crude oil price	
8	Alberta oil reserves	
9	Alberta conventional crude oil production and price	
10	Alberta supply of crude oil and equivalent	
11	Alberta crude oil and equivalent production	
12	Alberta natural gas production and price	14
13	Total marketable gas production and demand	
14	Alberta sulphur closing inventories and price	
ECOI	NOMICS	
1.1	Growth in world oil demand 2011–2013	1-2
1.2	2012 Brent Blend and WTI prices	1-3
1.3	Brent Blend and WTI prices	1-4
1.4	U.S. crude oil and natural gas daily production	1-5
1.5	Price of WTI	1-6
1.6	Average price of light-medium crude oil at the Alberta wellhead	1-7
1.7	Average annual crude oil price in Alberta	
1.8	2012 WTI and WCS prices	1-9
1.9	U.S. operating refineries by PADD, 2012	1-11
1.10	2012 average monthly price of Alberta natural gas at plant gate	1-12
1.11	Average price of Alberta natural gas at plant gate	1-13
1.12	Alberta well cost estimations by PSAC area	1-15
1.13	Alberta and Canada economic indicators	1-16
1.14	U.S./Canadian dollar exchange rates	1-17
1.15	Alberta conventional oil and gas and oil sands capital expenditure	
1.16	2009–2012 value of production in Alberta	

RESOURCE ENDOWMENT

2.1	Basinal elements of the Western Canada Sedimentary Basin	2-2
2.2	Geologic evolution of Alberta	2-3
2.3	Generalized stratigraphic column of Alberta	2-4

CRUDE BITUMEN

R3.1	Alberta's oil sands areas and select deposits	
R3.2	Remaining established reserves under active development	
S3.1	Production of bitumen in Alberta, 2012	
S3.2	Alberta crude oil and equivalent production	
S3.3	Total in situ bitumen production and producing bitumen wells	
S3.4	In situ bitumen production by oil sands area	
S3.5	In situ bitumen production by recovery method	
S3.6	In situ bitumen average well productivity by recovery method	
S3.7	Alberta oil sands upgrading coke inventory	
S3.8	Alberta crude bitumen production	
S3.9	Alberta upgraded bitumen (SCO) production	
S3.10	Alberta oil sands pipelines	
S3.11	Selected Canadian and U.S. crude oil pipelines	
S3.12	Alberta demand and disposition of upgraded (SCO) and nonupgraded bitumen	

CRUDE OIL

R4.1	Remaining established reserves of crude oil	4-3
R4.2	Annual changes in initial established crude oil reserves	4-3
R4.3	Annual changes to EOR reserves	4-4
R4.4	Initial established crude oil reserves based on recovery mechanisms	4-7
R4.5	Geological distribution of reserves of crude oil	4-8
R4.6	Regional distribution of Alberta's conventional oil reserves, 2012	4-8
R4.7	Alberta's remaining established conventional oil reserves versus cumulative production	4-10
S4.1	Alberta successful oil well drilling by PSAC area	4-11
S4.2	Oil wells placed on production, 2012, by PSAC area	4-11
S4.3	Initial operating day rates of oil wells placed on production, 2012, by PSAC area	4-12
S4.4	Conventional crude oil average daily production by PSAC area	4-13
S4.5	Total crude oil average daily production and producing wells	4-13
S4.6	Number of producing oil wells and average day rates, 2012, by PSAC area	4-14
S4.7	Crude oil well productivity in 2012	4-14
S4.8	Conventional crude oil average daily production by drilling year	4-15
S4.9	Comparison of crude oil production	4-16
S4.10	Crude oil production profile – Pembina-Cardium, 2009–2012	4-16
S4.11	Alberta average daily production of crude oil from vertical wells	4-17
S4.12	Alberta average daily production of crude oil from horizontal wells	4-18
S4.13	Alberta average daily production of crude oil by well type	4-19
S4.14	Alberta average daily production of crude oil	4-20
S4.15	Alberta well activity and WTI crude oil price	4-21
S4.16	Capacity and location of Alberta refineries	4-22
S4.17	Alberta demand and disposition of crude oil	4-22

NATURAL GAS

R5.1	Annual reserves additions and production of conventional marketable gas	
R5.2	Remaining conventional marketable gas reserves	5-3
R5.3	New, development, and revisions to conventional marketable gas reserves	5-4
R5.4	Initial marketable conventional gas reserves changes by PSAC area	5-7
R5.5	Geological distribution of conventional marketable gas reserves	5-7
R5.6	Alberta sour gas wells – Cretaceous to Permian clastics	5-10
R5.7	Alberta sour gas wells – Mississippian and Devonian carbonates	5-11
R5.8	Expected recovery of conventional natural gas components	5-14
R5.9	CBM deposit play areas and subareas	5-17
R5.10	Potential shale gas strata	
R5.11	Shale gas resource potential - General view of major shallow shale gas prospective horizons	5-21
R5.12	Shale gas resource potential - General view of major deep shale gas prospective horizons	
R5.13	Growth of initial established reserves of conventional marketable gas	
R5.14	Remaining conventional established reserves and production of marketable gas	
R5.15	Regional distribution of Alberta gas reserves by PSAC area	
R5.16	Conventional gas in place by geological period	
S5.1	New conventional gas connections, 2012, by PSAC area	5-29
S5.2	Conventional raw gas average productivity rates and producing connections, 2012, by PSAC area	
S5.3	Conventional marketable gas production by PSAC area	
S5.4	Conventional marketable gas production and number of producing conventional gas connections	
S5.5	Conventional raw gas production by connection year	5-33
S5.6	Comparison of raw natural gas production	5-34
S5.7	Total CBM and CBM hybrid gas production and number of producing CBM connections	5-35
S5.8	Shale gas production and number of producing shale connections	5-36
S5.9	Producing conventional gas connections and average productivity in 2012	5-36
S5.10	Average initial natural gas well productivity in Alberta	5-37
S5.11	Average initial productivities of conventional natural gas in 2011 by drilling type	
S5.12	Horizontal and vertical average production profile – Kaybob South	
	(Bluesky, Gething, Nordegg, and Montney), 2010–2012	
S5.13	Marketable gas production	5-45
S5.14	Alberta natural gas connections and price	5-45
S5.15	Gas production from bitumen upgrading and bitumen wells	5-46
S5.16	Commercial gas storage locations	5-48
S5.17	Historical volumes "available for permitting"	
S5.18	Major gas pipelines in Canada and Alberta export points	
S5.19	Alberta marketable gas demand by sector	
S5.20	Total purchased, processed, and produced gas for oil sands production	5-52
S5.21	Total marketable gas production and demand	5-53

NATURAL GAS LIQUIDS

R6.1	Remaining established NGL reserves expected to be extracted from conventional gas and annual production	6-3
R6.2	Remaining established reserves of conventional natural gas liquids	6-4
S6.1	Schematic of Alberta NGL flow	6-6
S6.2	Ethane gathering and delivery systems	6-7
S6.3	Natural gas, light-medium oil, and NGL prices	6-9
S6.4	Ethane supply and demand	6-13
S6.5	Potential ethane supply and demand	6-13
S6.6	Propane supply from natural gas and demand	6-15
S6.7	Butanes supply from natural gas and demand	6-15
S6.8	Pentanes plus supply from natural gas and demand for diluent	6-17

SULPHUR

S7.1	Sulphur production from gas processing plants in Alberta	.7-5
S7.2	Sulphur production from bitumen upgrading	.7-6
S7.3	Sources of sulphur production	.7-7
S7.4	Canadian sulphur exports	.7-8
S7.5	Sulphur supply and demand in Alberta	.7-8

COAL

R8.1	Significant coal-bearing formations in Alberta	8-3
R8.2	Historical coal exploration in Alberta	8-5
S8.1	Producing coal mines in Alberta	8-9
S8.2	Alberta marketable coal production	8-10

TERMINOLOGY AND CONVERSION FACTORS

AA.1 PSAC areas in Alberta	A-	-7
----------------------------	----	----

CRUDE BITUMEN PAY THICKNESS AND GEOLOGICAL STRUCTURE CONTOUR MAPS

AE.1	Reconstructed structure contours of the sub-Cretaceous unconformity at the end of Bluesky/Wabiskaw time	E-2
AE.2	Bitumen pay thickness of Peace River Bluesky-Gething deposit	E - 3
AE.3	Bitumen pay thickness of Athabasca Grosmont deposit	E-4
AE.4	Bitumen pay thickness of Athabasca Wabiskaw-McMurray deposit	E -6
AE.5	Bitumen pay thickness of Athabasca Upper Grand Rapids deposit	E - 7
AE.6	Bitumen pay thickness of Athabasca Middle Grand Rapids deposit	E-8
AE.7	Bitumen pay thickness of Athabasca Lower Grand Rapids deposit	E -9
AE.8	Bitumen pay thickness of Athabasca Nisku deposit	E-10
AE.9	Reconstructed structure contours of Paleozoic surface at beginning of Cold Lake Clearwater time	E-12
AE.10	Bitumen pay thickness of northern portion of Cold Lake Wabiskaw-McMurray deposit	E -13
AE.11	Bitumen pay thickness of Cold Lake Clearwater deposit	E - 14
AE.12	Bitumen pay thickness of Cold Lake Lower Grand Rapids deposit	E-15
AE.13	Bitumen pay thickness of Cold Lake Upper Grand Rapids deposit	E-16

SUMMARY OF ALBERTA'S SHALE- AND SILTSTONE-HOSTED HYDROCARBON RESOURCE POTENTIAL

AF.1	P50 gas, oil, and liquids initial in-place for the Duvernay Formation	.F - 2
AF.2	P50 gas, oil, and liquids initial in-place for the Muskwa Formation	.F-3
AF.3	P50 gas, oil, and liquids initial in-place for the Montney Formation	.F - 4
AF.4	P50 gas, oil, and liquids initial in-place for the Banff/Exshaw Formation	.F-5
AF.5	P50 gas, oil, and liquids initial in-place for the Nordegg Formation	.F - 6
AF.6	P50 gas, oil, and liquids initial in-place for the Wilrich Formation	.F-7

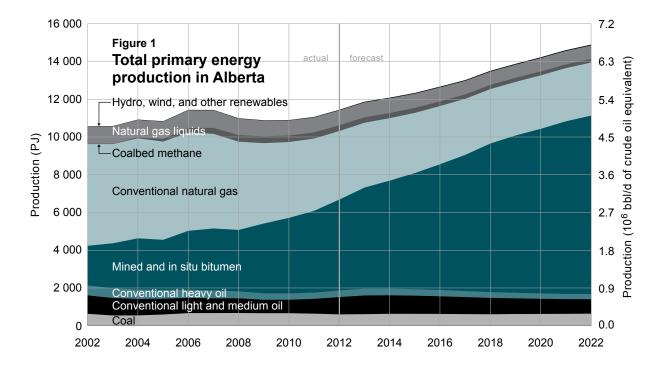
HIGHLIGHTS

In 2012, compared with 2011, remaining established reserves of conventional crude oil increased by 9.5 per cent and production rose by 14 per cent.

Total bitumen production increased by 10 per cent. Production from in situ projects exceeded mined production for the first time in 2012.

Alberta's remaining established reserves of conventional natural gas decreased by 3.1 per cent, and marketable gas production declined by 5.6 per cent.

OVERVIEW


The Energy Resources Conservation Board (ERCB) is a quasi-judicial regulatory agency of the Government of Alberta. Its mission is to ensure that the discovery, development, and delivery of Alberta's energy resources take place in a manner that is fair, responsible, and in the public interest. As part of its legislated mandate, the ERCB provides for the appraisal of the province's energy reserves and their productive capacity and the requirements for energy resources and energy in Alberta. The ERCB no longer publishes an analysis of Alberta's electricity supply and demand outlook. The Alberta Electric System Operator (AESO) provides a forecast of electricity supply and demand as part of its legislated mandate.

Providing information to support good decision-making is a key service of the ERCB. Making energy resource data available to everyone involved—the ERCB, landowners, communities, industry, government, and interested groups—results in better decisions that affect the development of Alberta's resources.

Every year the ERCB issues a report providing stakeholders with independent and comprehensive information on the state of reserves, supply, and demand for Alberta's diverse energy resources: crude bitumen, crude oil, natural gas, natural gas liquids, coal, and sulphur. This year's report (*ST98-2013: Alberta Energy Reserves 2012 and Supply/Demand Outlook 2013–2022*) includes estimates of initial established reserves (recoverable quantities estimated to be in the ground before any production), remaining established reserves (recoverable quantities known to be left), and ultimate potential (recoverable quantities that have already been discovered plus those that have yet to be discovered). It also includes a 10-year supply and demand forecast for Alberta's energy resources from 2013 to 2022 (the forecast period); additionally, this report provides some historical trends on energy commodities so that supply and price relationships may be better understood.

Summary of Energy Reserves, Production, and Demand in Alberta

In 2012, Alberta produced 11 442 petajoules of energy from all sources, including renewable sources. This is equivalent to more than 5.1 million barrels per day of conventional light-medium crude oil. In 2022, Alberta is projected to have produced 14 892 petajoules of energy from all sources, which is equivalent to over 6.7 million barrels per day of conventional light- and medium-quality crude oil. A breakdown of production by energy source is illustrated in **Figure 1**.

Reserves

Reserves are the recoverable quantities of energy resource commodities that are known with reasonable certainty. In-place resources are the larger quantities existing in the ground from which a portion has been, or may be, recovered as reserves. The ERCB also estimates a quantity (the ultimate potential) from discovered and undiscovered in-place resources that may be ultimately recovered when all future resource extraction activities have ceased within Alberta. The ERCB's current reserves and resource classification system is discussed in **Section 2.3**.

Table 1 summarizes Alberta's energy reserves, resources, and production at the end of 2012. As detailed in the recent study *Summary of Alberta's Shale- and Siltstone-Hosted Hydrocarbon Resource Potential* (ERCB/AGS Open File Report 2012-06), the ERCB has estimated the in-place natural gas, natural gas liquids, and crude oil resources in six key geological formations where shale is the predominate rock type. These quantities are shown as a separate line in the table. Recoverable quantities related to these estimates have yet to be established by the ERCB. A summary of the study results is given in **Section 2.2.1**.

Production

Raw bitumen in Alberta is produced either by mining the ore or by various in situ techniques using wells to produce bitumen. Bitumen production accounted for 78 per cent of Alberta's total crude oil and bitumen production in 2012. Bitumen production increased by 4 per cent at mining projects and by 17 per cent at in situ projects in 2012, resulting in an overall raw bitumen production increase of 10 per cent relative to 2011.

	Crude bitumen		Crude oil		Natural gas ^a		Raw coal	
-	(million cubic metres)	(billion barrels)	(million cubic metres)	(billion barrels)	(billion cubic metres)	(trillion cubic feet)	(billion tonnes)	(billion tons)
Initial in-place resources	293 125	1 845	12 026	75.7	9 591	340	94	103
Initial established reserves	28 092	177	2 922	18.4	5 442	193	35	38
Cumulative production	1 406	8.8	2 653	16.7	4 470	159	1.53	1.68
Remaining established reserves	26 686	168	269	1.7	972 ⁵	34.5 [⊳]	33	37
Annual production	112	0.705	32.3	0.203	105.3	3.7	0.028°	0.031°
Ultimate potential (recoverable)	50 000	315	3 130	19.7	6 276 ^d	223 ^d	620	683
Shale/siltstone initial in-place resources ^e			67 320	423.6	96 461	3 424		

Table 1 Reserves, resources, and production summary, 2012

^a Expressed as "as is" gas, except for annual production, which is 37.4 megajoules per cubic metre; includes coalbed methane.

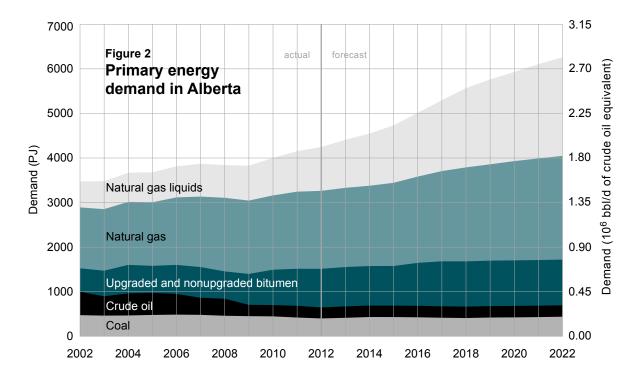
^b Measured at field gate.

^c Annual production is marketable.

^d Does not include unconventional natural gas.

e Values based on the medium estimate and include only unconventional deposits; no assumption about recoverability was made in determining these resource estimates.

In 2012, crude oil production increased by about 14 per cent, total marketable natural gas production in Alberta declined by over 5 per cent, total natural gas liquids¹ (NGLs) production decreased by 1 per cent, sulphur production declined by 8 per cent, and coal production declined by 6 per cent.


While this report focuses on the fossil-based energy resources in the province, a relatively small amount of energy, about 0.2 per cent, is also produced from renewable energy sources, such as hydro and wind power.

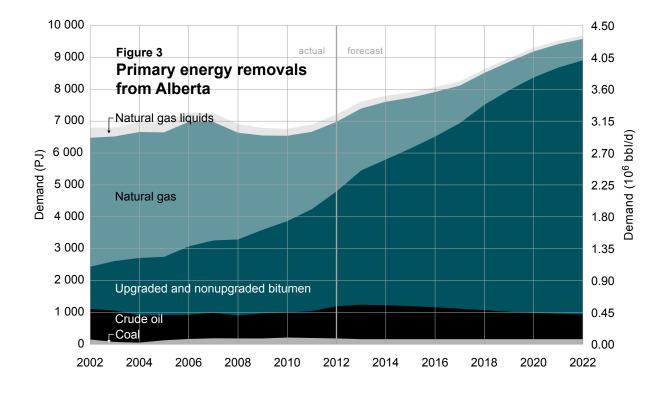
Energy Demand

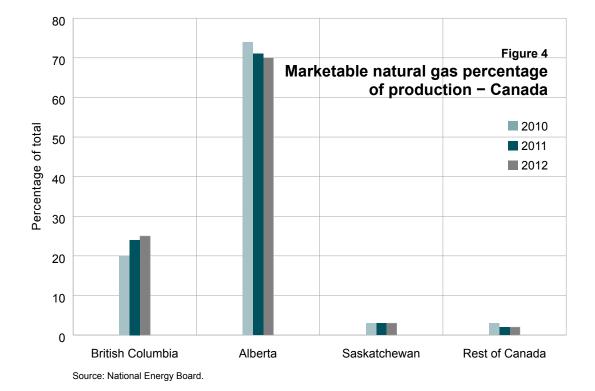
Alberta's primary energy demand by energy type is shown in **Figure 2**. In 2012, demand for conventional crude oil and coal was lower relative to 2011, while 2012 demand for natural gas, NGLs, and upgraded² and nonupgraded bitumen increased relative to 2011. Demand for NGLs is projected to increase as demand for pentanes plus as a diluent increases throughout the forecast period in conjunction with the crude bitumen production forecast. Total primary energy consumption in 2012 was 4236 petajoules, equivalent to about 1.9 million barrels per day of crude oil. This amount is projected to increase to 6248 petajoules, or 2.8 million barrels per day, by 2022.

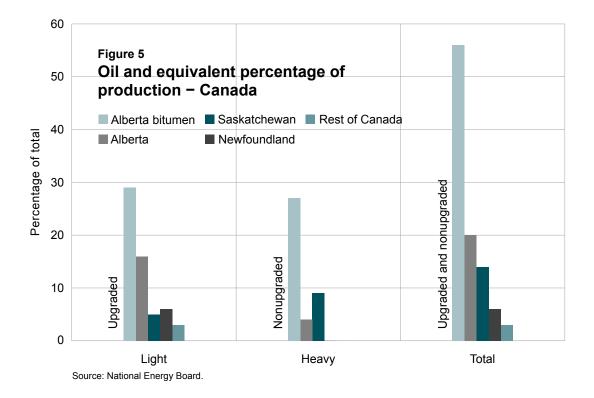
¹ Natural gas liquids refers to ethane, propane, butanes, pentanes plus, or a combination of these obtained from the processing of raw gas or condensate. See discussion in **Section 6**.

² Upgraded bitumen was formerly referred to as synthetic crude oil (SCO) in this report. This change was made so that the other types of upgraded products could be included in bitumen production discussions. Nevertheless, the vast majority of upgraded bitumen is, in fact, SCO. See discussion in **Section 3.2.1.3**.

The primary energy removals from Alberta are shown in **Figure 3**. Most shipments are to the United States. Natural gas removals from Alberta are projected to decrease over the forecast period as Alberta domestic gas supply continues to decrease due to low natural gas prices and increasing intra-Alberta demand. Total primary energy removals from the province are expected to reach 9684 petajoules in 2022, equivalent to 4.3 million barrels per day of crude oil, up from 7211 petajoules, or 3.2 million barrels per day, in 2012.


Alberta Hydrocarbon Production within the Canadian Context


Alberta is Canada's largest producer of marketable natural gas. In 2012, Alberta produced 70 per cent of Canada's total production, down from 71 per cent in 2011. Over the same period, Canada's second largest contributor, British Columbia, increased its share from 24 per cent to 25 per cent. **Figure 4** shows the percentage contributed by region in Canada for 2010, 2011, and 2012.


Alberta is also the largest contributor to Canadian oil and equivalent³ production and is the only contributor of upgraded and nonupgraded bitumen, which are the marketed components of raw bitumen production. **Figure 5** illustrates the contribution percentage breakdown by category and region in Canada for 2012.

Only two provinces, Alberta and Saskatchewan, contribute to conventional heavy crude oil production in Canada. In 2012, Alberta accounted for 76 per cent of Canada's oil and equivalent production, with marketed bitumen representing more than 55 per cent of the total.

³ Oil and equivalent includes light-medium and heavy crude oil, condensate (pentanes plus), and upgraded and nonupgraded bitumen.

Oil and Gas Prices and Alberta's Economy

Crude Oil Prices – 2012

Crude oil prices strengthened at the beginning of the year in response to supply disruptions and production declines in the Middle East and North Africa. Continued tension in the Middle East kept prices elevated. Prices, however, began to fall in April and reached yearly lows in June due to reports of high global crude oil stocks, declining Chinese exports, and renewed fears over another European recession. Prices began to recover in July as North Sea production was cut due to a strike, reducing supply. Market confidence also gained on speculation that the European Central Bank would pass stimulus measures. By the fourth quarter of 2012, prices began to fall again as Europe entered into another recession. Global economic growth estimates were reduced, and mounting fears over the ability of the United States to avert a "fiscal cliff" weakened market confidence.

In the first quarter of 2012, Brent Blend⁴ (Brent) prices averaged US\$118.50/bbl and reached a high of US\$125.45/bbl in March. Prices then fell and reached a low of US\$95.16/bbl in June. Brent prices in the second half of 2012 recovered and ranged between US\$102.62/bbl and US\$113.36/bbl, with a yearly average of US\$111.66/bbl. The West Texas Intermediate (WTI) price averaged US\$94.21/bbl in 2012 and reached a yearly high of US\$106.21/bbl in March and a low of US\$82.41/bbl in June.

⁴ Brent Blend is a blend of light sweet crude oil from 15 different oil fields in the North Sea. Brent blend futures are traded on the Intercontinental Exchange, Inc., and are considered a global benchmark for oil prices.

In 2012, the differential between Brent and WTI ranged from US\$10.37 per barrel to US\$22.33 per barrel and averaged US\$17.45 per barrel. This discount reflects the significant increases in U.S. supplies and the lack of pipeline capacity to move crude oil from Cushing, Oklahoma, to the U.S. Gulf Coast. Other methods of transportation used to transport crude are generally more costly and include rail, truck, and barge.

Heavier Canadian crudes, such as Western Canadian Select (WCS),⁵ have shown deeper discounts compared with other world benchmark prices. In 2012, WCS averaged US\$73.14/bbl, trading at US\$21.07/bbl under the price of WTI. Heavy Canadian crudes have been discounted due to concerns of oversupply and transportation constraints. The deep discount on heavy Canadian crudes is not expected to be alleviated until demand for Canadian crudes is increased by the addition of heavy refinery capacity and the alleviation of pipeline constraints.

Crude Oil Prices – Forecast

The ERCB bases its analysis on the expectation that the crude oil price in North America, measured by WTI crude oil, will continue to be volatile. The ERCB projects WTI to average US\$90.00/bbl in 2013, with a range from US\$80.00/bbl to US\$100.00/bbl. The price of WTI is expected to increase throughout the forecast period as increasing crude oil demand exerts upward pressure on supplies and price. In 2022, WTI prices are projected to be US\$119.46/bbl, with a range from US\$89.25/bbl to US\$148.83/bbl.

Natural Gas Prices – 2012

While historically North American crude oil prices have closely tracked international prices, natural gas prices in North America are reflective of domestic supply and demand with little global gas market influence aside from the impact of liquefied natural gas (LNG) imports. Alberta natural gas prices are heavily influenced by the Henry Hub U.S. market price. The most significant recent change in the market has been the increase in U.S. natural gas supply from shale gas, which has become economic due to horizontal drilling and multistage fracturing technology. Natural gas producers in North America have been, and are expected to continue to be, challenged by a weaker price environment.

The average Alberta reference price of natural gas in 2012 was Cdn\$2.14 per gigajoule (GJ), compared with Cdn\$3.28/GJ in 2011—a 35 per cent decrease. Natural gas prices in 2012 were affected by warmer-than-expected winter temperatures, which led to higher-than-average storage inventories. This, combined with strong natural gas production in the United States, resulted in the low natural gas prices. The monthly Alberta reference price for natural gas was highest in December at Cdn\$2.98/GJ and lowest in May at Cdn\$1.58/GJ. In 2012, U.S. natural gas prices at Henry Hub decreased by 31 per cent over 2011.

Natural Gas Prices - Forecast

The ERCB projects natural gas prices at the Alberta wellhead to average Cdn\$3.26/GJ in 2013, with a range between Cdn\$2.31/GJ and Cdn\$4.21/GJ. In the near term, prices are projected to remain weak due to increasing

⁵ Western Canadian Select is a type of marketed crude oil produced in western Canada and made up of heavy Canadian conventional crude oil and crude bitumen blended with diluents.

gas supply in North America. Longer term, a combination of LNG exports and increased domestic demand is to contribute to a strengthening of natural gas prices. Over the forecast period, the price of natural gas is projected to increase slowly, reaching an average of Cdn\$4.88/GJ in 2022.

Alberta's Economy – 2012

Alberta real gross domestic product (GDP) growth has mostly outperformed Canadian real GDP growth over the past decade, particularly in the 2003–2007 timeframe. Average Alberta GDP growth from 2002 to 2012 was 2.9 per cent, compared with a Canadian average of 2.0 per cent. Similarly, the unemployment rate in Alberta averaged 4.8 per cent over that period, while the Canadian unemployment rate averaged 7.1 per cent.

In 2012, the total value of Alberta's energy resource production decreased by 7.3 per cent relative to 2011. The value of upgraded and nonupgraded bitumen production has significantly exceeded the value of natural gas production, a trend that is expected to continue throughout the forecast period. In 2012, combined upgraded and nonupgraded bitumen revenues were greater than the combined revenues from conventional gas, conventional crude oil, natural gas liquids, and sulphur.

Alberta's Economy – Forecast

Economic growth is projected to continue to increase in 2013 as oil and gas activity continues to remain strong. Real GDP is forecast to increase by 3.0 per cent in 2013 and to continue to grow at a trend of 3.0 per cent from 2014 to 2022.

The ERCB estimates that oil sands capital expenditures decreased to \$20.4 billion in 2012, compared with \$22.7 billion in 2011. Oil sands expenditures are predicted to increase to \$21.6 billion in 2013 and peak in 2015 at \$23.4 billion. In 2012, some oil sands companies announced that they were cutting their capital budget spending and delaying the development of upcoming projects as a result of increased pressure from lower-cost conventional oil development in Canada and the United States.

Conventional oil and gas expenditures have rebounded significantly since the 2009 level of \$12 billion and reached \$25.8 billion in 2011 as activity in conventional basins shifted to the application of capital-intensive horizontal wells and multistage fracturing in conventional oil and liquids-rich gas plays. Investment in conventional oil and gas is expected to increase over the forecast period as producers continue to use the more costly horizontal wells and multistage fracturing technology.

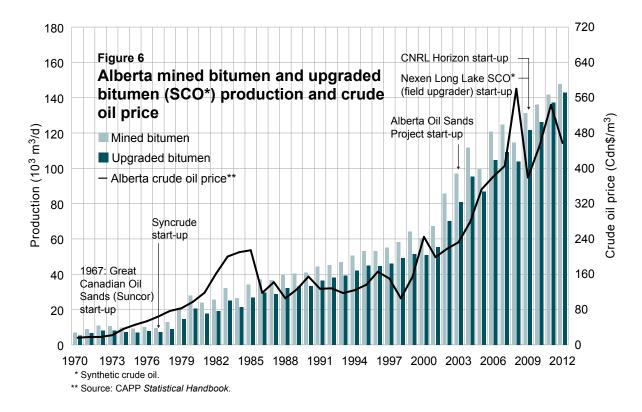
Production from upgraded and nonupgraded bitumen derived from the oil sands is projected to more than offset the decline in conventional resource production, increasing from 61 per cent of total energy revenues in 2012 to an average of 71 per cent of total energy revenues from 2015 to 2022.

Continued investment in oil sands mining, upgrading, and in situ bitumen projects will continue to drive Alberta's production and export growth and the overall Alberta economy. Alberta's economic growth will continue to be a strong contributor to Canadian economic growth.

Commodity Discussion

Crude Bitumen and Crude Oil

Crude Bitumen Reserves


The total remaining established reserves of in situ and mineable crude bitumen is 26.7 billion cubic metres (m³) (167.9 billion barrels), slightly less than in 2011 due to 0.12 billion m³ of production. Only 5.3 per cent of the initial established crude bitumen reserves have been produced since commercial production started in 1967.

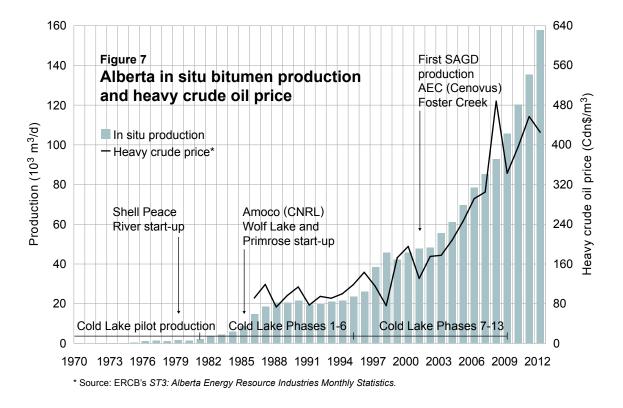

Crude Bitumen Production

Figure 6 shows the historical mined bitumen and upgraded bitumen production, beginning with the start-up of Great Canadian Oil Sands (Suncor) in 1967. This was followed by Syncrude in 1978 and the Alberta Oil Sands Project (Shell Muskeg River Mine and Shell Scotford Upgrader) in 2003. The Horizon Project (CNRL) commenced mining operations in late 2008 and produced upgraded bitumen in 2009. The figure also shows the average Alberta wellhead price of crude oil.

Historical in situ production and the price of heavy crude oil are shown in **Figure 7**. Regionally, in situ production growth in 2012 was strongest in Athabasca (29 per cent increase), followed by Peace River (23 per cent increase), then Cold Lake (3 per cent increase).

In 2012, Alberta produced 54.1 million m³ (340 million barrels) from mining and 57.7 million m³ (363 million barrels) from in situ, totalling 111.8 million m³ (704 million barrels). This is equivalent to 305.5 thousand m³

(1.9 million barrels) per day. Total raw bitumen production is projected to reach 605.4 thousand m³ (3.8 million barrels) per day by 2022.

Production from in situ projects exceeded mined production for the first time in 2012, a trend that is expected to continue. In 2012, total in situ production accounted for 52 per cent of total bitumen production, compared with 49 per cent in 2011.

The ERCB projects that mined bitumen production will reach 255 thousand m³ per day in 2022. This is slightly lower than the end of the forecast period in last year's report. The percentage of mined bitumen to total production over the forecast period is expected to decrease from 48 per cent in 2012 to 42 per cent in 2022.

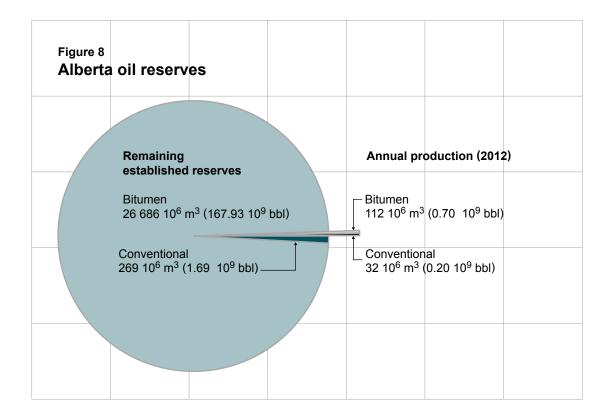
The ERCB expects in situ crude bitumen production to increase to 351 thousand m³ per day in 2022. This represents an increase of 8 per cent when compared to the end of the forecast period in last year's report. Based on this projection, in situ bitumen will account for 58 per cent of total bitumen produced in 2022. The current forecast has increased over last year's primarily due to the addition of new proposed projects and accelerated development schedules for existing and approved projects.

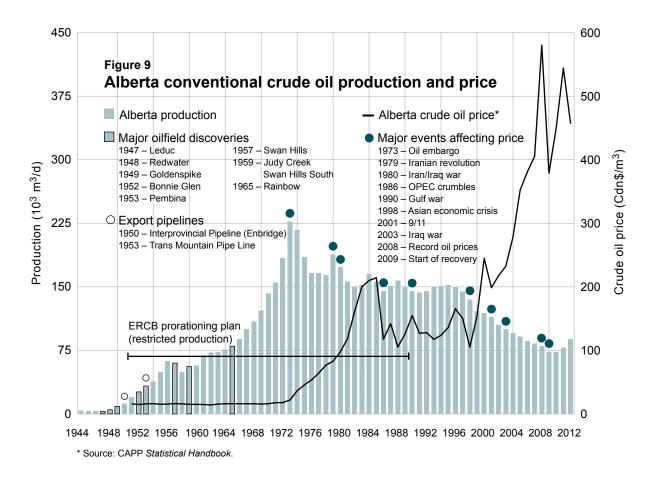
Upgraded Bitumen (SCO) Production

In 2012, all crude bitumen produced from mining, as well as a small portion of in situ production (about 7 per cent), was upgraded in Alberta, yielding 52.3 million m³ (329 million barrels) of upgraded bitumen. In 2012, the percentage of crude bitumen upgraded was 52 per cent of total crude bitumen. Over the forecast period, this percentage is expected to decline to 38 per cent as a result of in situ production growth outpacing the

growth in upgrading capacity. In 2022, upgraded bitumen production is forecast to increase to 73.3 million m³ (461.2 million barrels). This represents a decrease of 10 per cent over last year's forecast due to the cancellation of the Voyageur upgrader.

Over the next 10 years, mined bitumen is projected to continue to be the primary source of crude bitumen to be upgraded in Alberta. However, the percentage of in situ bitumen upgraded is expected to vary throughout the forecast period, before reaching about 9 per cent in 2022.


Crude Oil Reserves

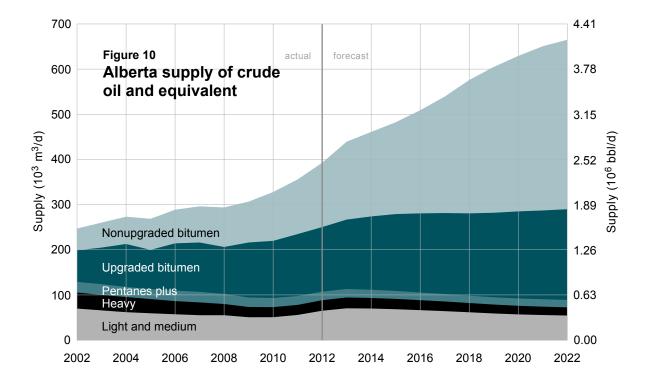

The ERCB estimates the remaining established reserves of conventional crude oil in Alberta to be 269.2 million m³ (1.7 billion barrels), representing about one third of Canada's remaining conventional reserves. This is a year-over-year increase of 23.3 million m³, or 9.5 per cent, resulting from production, reserves adjustments, and additions from drilling that occurred during 2012.

Annual production and remaining established reserves for crude bitumen and crude oil are presented in Figure 8.

Crude Oil Production

Alberta's historical conventional crude oil production and the average Alberta wellhead price are shown in **Figure 9**. The first major oilfield discovered in Alberta was in Turner Valley in 1914. Collectively, Turner Valley oilfields became a major producer of oil and gas, and for a time, the largest producer in the British Empire. The discovery of Leduc Woodbend in 1947 jumpstarted Alberta crude oil production, which culminated in 1973 with

peak production of 227.4 thousand m³ per day. Major events that affected Alberta's crude oil production and crude oil prices are also noted in the figure.


Starting in 2010, total crude oil production in Alberta reversed the downward trend that was the norm since the early 1970s. Since 2010, light-medium crude oil production has begun to increase as a result of increased horizontal drilling activity and the introduction of multistage hydraulic fracturing technology. Alberta's production of conventional crude oil totalled 32.4 million m³ (204 million barrels) in 2012, an increase of 14 per cent.

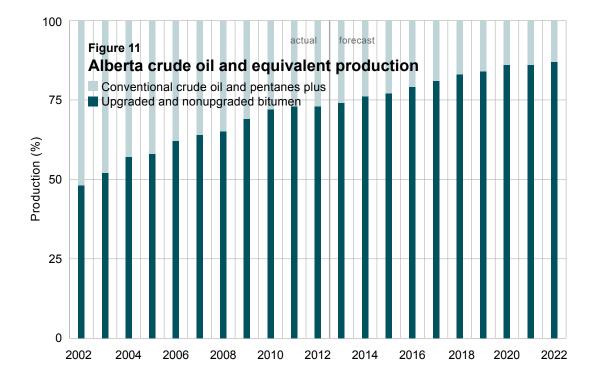

Total Oil Supply and Demand

Figure 10 shows crude oil and equivalent supply. In 2012, Alberta's supply of crude oil and equivalent reached 392.6 thousand m³ (2.5 million barrels) per day, a 10 per cent increase compared with 2011. Production is forecast to reach 665.1 thousand m³ (4.2 million barrels) per day in 2022.

A comparison of conventional oil and bitumen production over the last 10 years, as illustrated in **Figure 11**, clearly shows the increasing contribution of bitumen to Alberta's oil production.

The ERCB estimates that bitumen production will double by 2022. Over the forecast period, as illustrated in **Figure 11**, the growth in production of upgraded and nonupgraded bitumen is expected to more than offset the

projected long-term decline in conventional crude oil. Upgraded and nonupgraded bitumen will account for 87 per cent of total production in 2022, compared with about 73 per cent in 2012. Since 2003, upgraded and nonupgraded bitumen has accounted for more than 50 per cent of total production.

Demand for oil produced in Alberta is from oil refineries, most of which are outside the province. Oil refineries use mainly crude oil, butanes, and natural gas as feedstock, along with upgraded and nonupgraded bitumen and pentanes plus, to produce a wide variety of refined petroleum products. Crude oil shipments outside of Alberta amounted to 81 per cent of total production in 2012. The ERCB expects that by 2022, this figure will slowly decrease to about 76 per cent of production due to the decline expected in Alberta light-medium and heavy crude oil production over the forecast period.

Natural Gas

Historical gas production and prices are shown in **Figure 12**. In the 1950s and 1960s, natural gas was mainly produced as a by-product of crude oil production and was flared as a waste product. During this period, natural gas prices were low. In the early 1970s, when the Organization of the Petroleum Exporting Countries (OPEC) increased crude oil prices, natural gas prices started to increase.

In 1980, through the National Energy Program, the federal government imposed regulated gas prices tied to crude oil prices based on their relative calorific values. High gas prices in the 1980s spurred drilling, which resulted in a significant oversupply of reserves.

In 1985, natural gas prices were deregulated in Canada. The removal of set prices, the oversupply of reserves, and the drop in demand because of a recession resulted in the decline of natural gas prices for the rest of the decade.

In the early 1990s, natural gas prices became more market responsive. Development of trading points in Chicago, New York, and the Henry Hub (near Erath, Louisiana) in the United States in the late 1980s and the AECO-C hub⁶ (near Suffield, Alberta) in the early 1990s facilitated natural gas being traded as a true commodity. More recently, shale gas production in the United States has significantly contributed to the growth in natural gas production, reversing the trend of annual U.S. production declines. Increased supply and lagging demand has resulted in low gas prices in North America and contributed to the reduction in natural gas activity in Alberta.

Natural gas is produced from conventional and unconventional reserves in Alberta, where unconventional gas is defined as coalbed methane (CBM) and shale gas. Marketable gas is the gas that remains after the raw gas is processed to remove constituents and that meets specifications for use as a fuel. Marketable gas reserves are determined by applying a surface loss or shrinkage factor to the raw gas volume. Most marketable natural gas in Alberta is produced from conventional sources.

Conventional Natural Gas Reserves

As of December 31, 2012, the ERCB estimates the remaining established reserves of marketable conventional gas in Alberta downstream of field plants to be 916 billion m³, with a total energy content of about 36 exajoules. This decrease of 29.4 billion m³ since December 31, 2011, is the result of all reserves additions less production during 2012. These reserves include 28.9 billion m³ of ethane and other NGLs, which are present in marketable gas leaving the field plant and are subsequently recovered at straddle plants. Removal of NGLs results in a 4.6 per cent reduction in the average heating value, from 39.1 megajoules per m³ to 37.4 megajoules per m³, for gas downstream of straddle plants. Reserves added through drilling (new plus development) totalled 24.2 billion m³, replacing 25 per cent of Alberta's 2012 production, which is the lowest replacement ratio in the last 15 years.

In March 2005, the ERCB (then known as the Alberta Energy and Utilities Board) and the National Energy Board jointly released *Report 2005-A: Alberta's Ultimate Potential for Conventional Natural Gas*, an updated estimate of the ultimate potential for conventional natural gas. The boards adopted the medium case, representing an ultimate potential of 6276 billion m³, or 223 trillion cubic feet (Tcf) (6528 billion m³, or 232 Tcf, at 37.4 megajoules per m³).

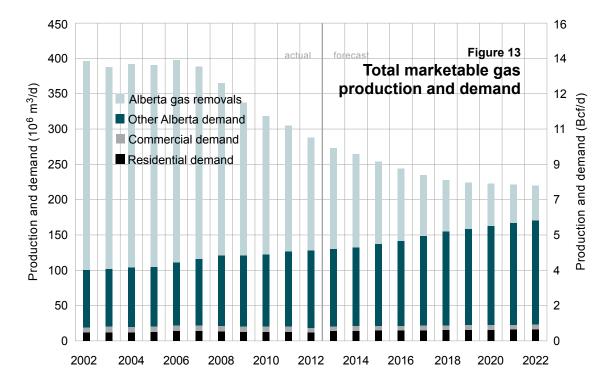
Unconventional Natural Gas Reserves

The ERCB estimates the initial established reserves of CBM to be 101.3 billion m³ as of December 31, 2012, relatively unchanged from 2011. Remaining established reserves in 2012 are 56.7 billion m³, down from 62.0 billion m³ in 2011 due to production.

Total Natural Gas Production

Several major factors affect natural gas production, including natural gas prices, drilling and connection activity, the accessibility of Alberta's remaining reserves, and the performance characteristics of wells. In 2012, total

⁶ The Alberta Energy Company storage facility (AECO-C) hub is the main pricing point for Alberta natural gas and represents the major pricing point for Canadian gas.


marketable natural gas production in Alberta, including unconventional production, declined by 5.6 per cent to 287.7 million m³ per day from 304.7 million m³ per day. Total production from identified CBM and CBM hybrid connections decreased 6.7 per cent in 2012 to 22.3 million from the 2011 volume of 23.9 million m³ per day. In 2012, natural gas from conventional gas and oil connections, at 265.2 million m³ per day (standardized to 37.4 megajoules per m³), represented 92.2 per cent of production. The remaining 7.8 per cent of gas supply came from CBM and minor shale gas connections at 22.3 million m³ per day and 0.2 million m³ per day, respectively.

Total Natural Gas Supply and Demand

The ERCB believes that new connections will not be able to sustain production levels over the forecast period.

Despite declining natural gas supply from conventional sources, sufficient supply exists to meet Alberta's demand. In 2012, about 44 per cent of Alberta production was consumed within Alberta. The remainder was sent to other Canadian provinces and the United States. By the end of the forecast period, domestic demand in Alberta is forecast to represent about 78 per cent of total Alberta natural gas production, not including potential shale gas production or natural gas supply from British Columbia that connects to the pipeline network in Alberta.

Therefore, as Alberta requirements continue to increase and production continues to decline, less gas is forecast to be available for removal from the province. Alberta's historical and forecast marketable gas production (at 37.4 megajoules per m³) and demand are shown in **Figure 13**.

Ethane and Other Natural Gas Liquids

Ethane Reserves

As of December 31, 2012, the ERCB estimates remaining established reserves of extractable ethane to be 108.1 million m³ in liquefied form. This estimate considers the recovery of liquid ethane from raw gas extracted at field and straddle plants in Alberta based on existing technology and market conditions.

Ethane Production

In 2012, ethane volumes extracted at Alberta processing facilities decreased to 34.0 thousand m³ per day from 35.2 thousand m³ per day in 2011. About 70 per cent of total ethane in the gas stream was extracted in 2012, while the remainder was left in the gas stream and sold for its heating value. The ERCB expects that Alberta ethane supply will slightly increase over the next two years. New ethane supplies are expected to come from liquids-rich natural gas and oil sands off-gas. The ERCB expects that ethane imports from the United States will start later in 2013 or in 2014 to augment the overall provincial supply, as a result of increasing ethane demand. Ethane imports from the United States are projected to continue to increase throughout the forecast period.

Propane, Butane, and Pentanes Plus Reserves

As of December 31, 2012, the ERCB estimates remaining extractable reserves of propane, butanes, and pentanes plus to be 63.7 million m³, 34.6 million m³, and 45.5 million m³, respectively. Cumulatively, these NGLs reserves equate to 70 per cent of Alberta's remaining light-medium crude oil reserves, a decrease from 82 per cent in 2011 due to the reserves estimate for light-medium crude oil significantly increasing.

Propane, Butane, and Pentanes Plus Production

The supply of propane and butanes is expected to meet demand over the forecast period. The decline in production for butanes and pentanes plus in Alberta has been moderating and the production of propane has slightly increased as a result of the increased focus by industry on developing liquids-rich gas pools since the prices of these NGLs track the price of crude oil. Propane production increased by 5 per cent, while butane and pentanes plus production declined by 0.7 per cent and 2.8 per cent, respectively, in 2012 over 2011. This compares to the decline rates for propane, butanes, and pentanes plus in 2011 of 0.5 per cent, 0.3 per cent, and 3 per cent, respectively. In 2012, the amount of propane and other NGLs in the raw natural gas stream increased as natural gas producers focused on drilling liquids-rich plays.

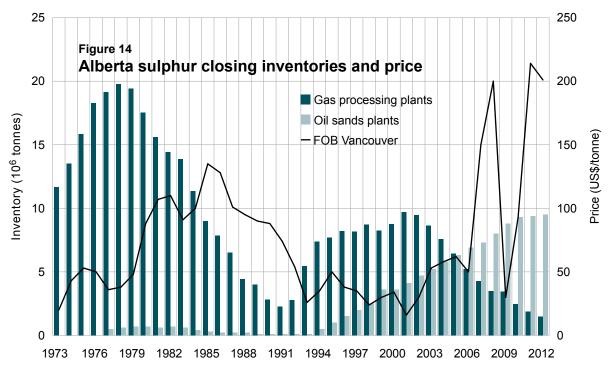
Due to the tightness of the supply of pentanes plus, alternative sources of diluent⁷ are being used by industry to dilute heavier crudes to meet pipeline quality.

⁷ Condensates and upgraded bitumen are two main types of diluent used to lower the viscosity of bitumen for transport in pipelines, although naphtha, light crude oil, and butanes can also be used to enable bitumen to meet pipeline specifications.

Sulphur

Sulphur Reserves

The ERCB estimates the remaining established reserves of elemental sulphur in the province as of December 31, 2012, to be 120.9 million tonnes, down 30 per cent from 2011. The significant decrease is mainly due to the reduction in sulphur reserves derived from crude bitumen reserves under active development.


Sulphur Production

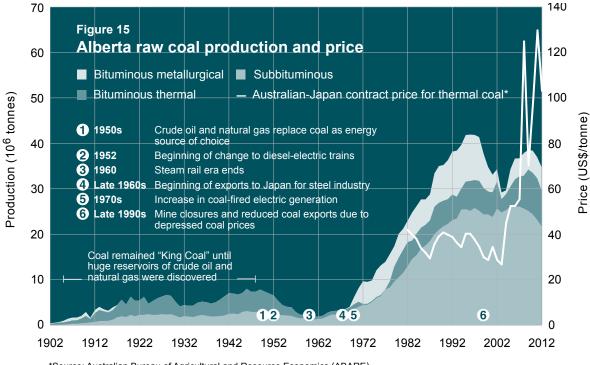
There are three sources of sulphur production in Alberta: sour natural gas processing, bitumen upgrading, and crude oil refinement into petroleum products. In 2012, Alberta produced 4.37 million tonnes of sulphur, of which 2.41 million tonnes were derived from sour gas, 1.96 million tonnes from upgrading of bitumen, and just 19 thousand tonnes from oil refining. The total sulphur production in 2012 represents a decrease of 7.6 per cent from 2011 levels due to a decline in natural gas production and lower sulphur content of the gas stream. Most of Canada's sulphur is produced in Alberta.

Figure 14 illustrates historical sulphur closing inventories at processing plants and oil sands operations and sulphur prices. When international demand is high, Alberta sulphur blocks are used as an additional source to increase the supply.

Sulphur is used in the production of phosphate fertilizer and kraft pulp, as well as in other chemical operations. Alberta produces more sulphur than any other province, and the majority of Alberta production is shipped outside the province.

Canadian exports in 2012 were 3.7 million tonnes, an 11 per cent decrease from 4.1 million tonnes in 2011. Nearly half of Canadian exports are sent to the United States, 1569 thousands tonnes in 2012, down from 1667 thousands tonnes in 2011.

In 2012, sulphur prices averaged US\$201 per tonne, a decrease of 6 per cent over last year's average price of US\$214 per tonne. In 2012, declining demand for sulphur from China, the world's largest sulphur importer, affected domestic Chinese and international prices. Weaker global demand for phosphate fertilizers also exerted downward pressure on the global sulphur price.


Coal

Coal Reserves

The ERCB estimates the remaining established reserves of all types of coal in Alberta as of December 31, 2012, to be 33.3 billion tonnes (36.7 billion tons). Of this amount, 22.7 billion tonnes (or about 68 per cent) is considered recoverable by underground mining methods, and 10.4 billion tonnes is recoverable by surface mining methods. Of the total remaining established reserves, less than 1 per cent is within permit boundaries of mines active in 2012. Alberta's coal reserves represent more than a thousand years of supply at current production levels.

Coal Production

Alberta's coal production dates back to the 1800s, when coal was used mainly for domestic heating and cooking. Historical raw coal production by type is illustrated in **Figure 15**. The export prices for coal are based on bituminous thermal coal contract prices for Australian coal shipped to Japan (often referred to as Newcastle thermal coal) and are used as a benchmark in this report. Australia is the world's largest exporter of coal. Subbituminous coal produced in Alberta is mainly used in the province for power generation, and cost-of-service contracts with the mining companies generally determine the price.

In 2012, ten mines produced coal in Alberta. These mines produced 28.2 million tonnes of marketable coal. Subbituminous coal accounted for 77 per cent of the total, metallurgical bituminous coal 10 per cent, and thermal bituminous coal the remaining 13 per cent. Overall, total marketable production of coal has decreased by 6 per cent relative to 2011, mainly due to weaker demand.

Alberta's metallurgical coal primarily serves the Asian steel industry, with Japan being the country that imports the most metallurgical and thermal coal. The long distance required to transport coal from mine to port creates a competitive disadvantage for Alberta export coal producers. The demand for metallurgical coal exports improved in 2012 from the 2011 level. The general decline in metallurgical coal demand in Asia stems from weakening steel prices and high inventories weighing on the market. Despite weak demand and the oversupply in global coal markets, North American metallurgical coal is becoming more competitive. Australia implemented taxes on mining profits and carbon emissions on July 1, 2012. As result, the 16 per cent increase in Alberta metallurgical coal production projected by the ERCB over the forecast period is expected to meet export market demand.

Electricity

The ERCB no longer publishes a perspective on supply and demand for Alberta's electricity sector. Information on electricity, including the market outlook, is provided by the AESO.

Oil and Gas Activity

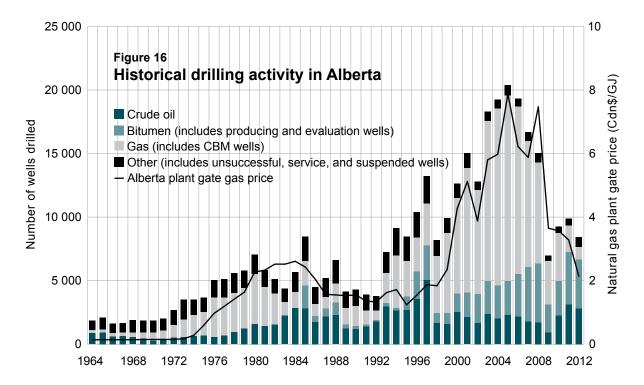
Crude Oil

In 2012, 2854 successful oil wells were drilled, a decrease of 10.2 per cent from 2011. The number of new wells placed on production for 2012 was 3107. From this total, 2379 new horizontal oil wells (including those using multistage fracturing technology) were brought on production in 2012, an increase of 31 per cent from the 2011 level of 1818 horizontal wells. This raises the total number of horizontal wells to 9664.

- The number of new vertical oil wells placed on production is projected to be 728 in 2013 and is expected to decline to 520 wells in 2022. This well count is about 50 per cent lower than last year's forecast and reflects the view that many new wells will be horizontal wells, with many of those using multistage fracturing technology.
- The number of new horizontal oil wells is projected to decrease from 2379 in 2012 to 2310 in 2013, and to
 decline gradually to 2080 in 2022. The forecast number of horizontal oil wells has significantly increased
 relative to last year's forecast and reflects actual activity in 2012, industry's projection of increased horizontal
 drillings, and anticipated continued strong crude oil prices.

Natural Gas

The number of new gas well connections dropped significantly in 2012 and has not been this low since 1992. In 2012, 1189 new conventional natural gas connections were placed on production in the province, a decrease of 49 per cent from 2011. This is the sixth straight year of reductions in conventional gas connections.


The number of horizontal gas wells drilled and connected in the province is increasing as a percentage of the total. In 2012, about 53 per cent of new gas connections were horizontal wells compared with 25 per cent in 2011 based on the revised well connection counts.

The numbers of new conventional gas connections over the forecast period are projected to be 1100 in 2013 and gradually increase to 1425 by 2022. The forecast number of connections is significantly lower than last year's forecast of 3800 largely due to the shift from vertical and directional wells to more capital-intensive, but highly productive, horizontal wells. The natural gas price forecast is also lower relative to last year's forecast. Finally, much lower drilling activity in 2012 compared with 2011 is reflected in the lower projection for conventional gas connections over the forecast period.

In 2012, there were 433 new connections for CBM and CBM hybrid production—all of them in the Horseshoe Canyon Formation. Overall, new CBM and CBM hybrid connections decreased by 58 per cent in 2012 over 2011. Natural gas producers drilled fewer CBM wells because gas from the Horseshoe Canyon Formation produces dry gas with lower productivity, which, with a low gas price environment, became uneconomical to drill.

Over the forecast period, almost all new CBM production will be from the Horseshoe Canyon. The number of new CBM and CBM hybrid connections is forecast to be 230 in 2013 and will increase slightly to 245 in 2022. This forecast is significantly lower than last year's projection due to the very low level of activity reported in 2012 and the expectation that return on investment will not improve over the forecast period because of the continuing low gas price environment.

Figure 16 illustrates the province's drilling history over the past six decades, together with the price of natural gas. Historically, most drilling in Alberta is related to successful gas wells relative to crude oil wells, although this trend reversed in 2011 and continued in 2012.

HIGHLIGHTS

WTI crude oil prices averaged US\$94.21 per barrel in 2012, compared with US\$95.11 per barrel in 2011, a decrease of 0.9 per cent.

Alberta wellhead natural gas prices averaged \$2.14 per gigajoule in 2012, compared with \$3.28 per gigajoule in 2011, a decrease of 35 per cent.

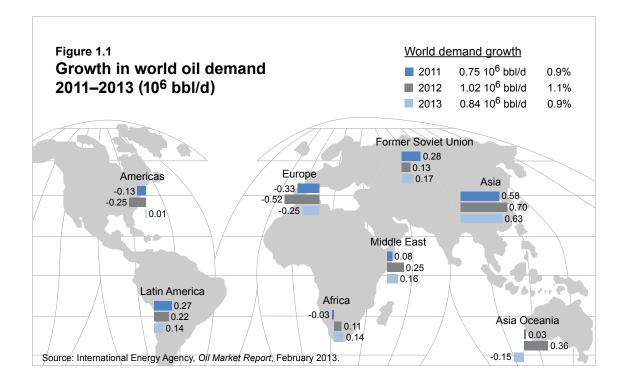
There were 8422 wells drilled in Alberta in 2012, compared with 9894 in 2011, a 15 per cent decrease.

ECONOMICS

Energy production is determined by energy prices, technology, costs, demand, and remaining reserves. Energy demand, in turn, is determined by such factors as economic activity, standard of living, seasonal temperatures, and population. This section introduces some of the main variables affecting Alberta's energy sector and sets the stage for later discussions in this report.

1.1 Energy Prices

1.1.1 World Oil Market¹


1

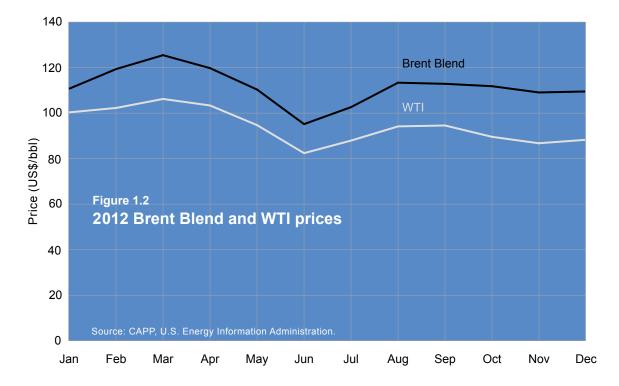
In 2012, world oil demand rose modestly by 1.0 million (10⁶) barrels per day (bbl/d) to 89.8 10⁶ bbl/d (14.3 10⁶ cubic metres per day [m³/d]), a 1.1 per cent change from 2011. International Energy Agency (IEA) data report that net oil consumption in the Organisation for Economic Co-operation and Development (OECD) dropped by 0.4 10⁶ bbl/d (0.06 10⁶ m³/d) to 46.0 10⁶ bbl/d (7.3 10⁶ m³/d). OECD European demand slowed due to high commodity prices and a weak economy. In the third quarter of 2012, OECD European oil demand fell to levels not seen since the onset of the 2008–2009 financial crisis. This decline was offset by an increase in demand from both OECD and non-OECD Asian countries; demand in the Asian-Pacific region rose by 1.0 10⁶ bbl/d (0.16 10⁶ m³/d) to 29.5 10⁶ bbl/d (4.7 10⁶ m³/d). Total non-OECD global demand increased by 1.4 10⁶ bbl/d (0.22 10⁶ m³/d) to 43.8 10⁶ bbl/d (7.0 10⁶ m³/d).

Figure 1.1 illustrates changes in oil demand across the globe in 2011 and 2012, along with the most recent forecast for 2013 by the IEA. The IEA projects global crude oil demand to increase by $0.8 \ 10^6 \ bbl/d \ (0.13 \ 10^6 \ m^3/d)$ in 2013, or 0.9 per cent, to reach 90.7 $10^6 \ bbl/d \ (14.4 \ 10^6 \ m^3/d)$. Developing economies' growth will continue to offset declining growth in OECD countries in 2013. Demand in OECD countries is projected to decline by $0.4 \ 10^6 \ bbl/d \ (0.2 \ 10^6 \ m^3/d)$.

In 2012, the Organization of Petroleum Exporting Countries (OPEC) produced 31.4 10⁶ bbl/d (5.0 10⁶ m³/d), compared with 29.9 10⁶ bbl/d (4.8 10⁶ m³/d) in 2011. OPEC production in 2012 satisfied approximately 35 per cent of total world oil demand. Non-OPEC oil production increased from 52.7 10⁶ bbl/d (8.4 10⁶ m³/d) in 2011 to 53.4 10⁶ bbl/d (8.5 10⁶ m³/d). In 2012, the world's top three oil producing

¹ Statistics obtained from the International Energy Agency's Oil Market Report (February 2013).

countries (Russia, Saudi Arabia, and the United States) produced 33 per cent of total oil supply: Russia produced 10.7 10^6 bbl/d (1.7 10^6 m³/d), Saudi Arabia produced 9.6 10^6 bbl/d (1.5 10^6 m³/d), and the United States produced 9.1 10^6 bbl/d (1.4 10^6 m³/d), in 2012.


1.1.2 International Oil Prices

Monthly average world oil prices for 2012, represented by the price of Brent Blend (Brent)² and the price of West Texas Intermediate (WTI),³ are shown in **Figure 1.2.** In the first quarter of 2012, Brent prices averaged US\$118.50/bbl and reached a high of US\$125.45/bbl in March. Prices then fell, reaching a low of US\$95.16/bbl in June. Brent prices in the second half of 2012 recovered and ranged between US\$102.62/bbl and US\$113.36/bbl, with a yearly average of US\$111.66/bbl. The WTI price averaged US\$94.21/bbl in 2012 and reached a yearly high of US\$106.21/bbl in March and a low of US\$82.41/bbl in June.

In the first quarter of 2012, crude oil prices strengthened in response to supply disruptions and production declines in Libya, South Sudan, Syria, Yemen, and the North Sea. Continued tension in the Middle East kept prices elevated. Prices began to fall in April and reached yearly lows in June 2012 on reports of high global crude oil stocks, declining Chinese exports, and renewed fears over another European recession. Prices in July began to recover as North Sea production was cut due to a strike, reducing supply. Market confidence also gained on

² Brent Blend is a blend of light sweet crude oil from 15 different oil fields in the North Sea. Brent Blend futures are traded on the IntercontinentalExchange Inc. and are considered a global benchmark for oil prices.

³ WTI is a light sweet grade of crude oil that is typically referenced for pricing purposes at Cushing, Oklahoma.

speculation that the European Central Bank would pass stimulus measures. By the fourth quarter of 2012, prices began to fall again as Europe entered into another recession. Global economic growth estimates were reduced and mounting fears over the ability of the U.S. congress to avert a "fiscal cliff" weakened market confidence.

Prices recovered slightly and remained steady into early 2013 as market confidence was restored when the U.S. Congress approved a deal to delay mandated tax increases and spending cuts. Recent data from China also indicated that stimulus plans have resulted in improvements to the economy. Continued political unrest in the Middle East has helped to keep crude oil prices in early 2013 steady. Increasing global oil supply and weak global economic activity are expected to keep prices lower throughout 2013.

Another significant market condition, highlighted in **Figure 1.2**, is the disconnect between the price of WTI and Brent. WTI began 2012 trading at a US\$10.37/bbl discount to Brent. By the fourth quarter, however, the discount had widened to US\$21.94/bbl, resulting in an average 2012 discount of US\$17.45/bbl. This discount reflects the significant increases in North American mid-continent supplies and the lack of pipeline capacity to move crude oil from Cushing, Oklahoma, to the U.S. Gulf Coast.

Bakken light oil production from the Williston Basin hit record high production levels in 2012, up 58 per cent over 2011 levels. Texas oil production was up by 36 per cent over 2011 levels, and production from the Canadian oil sands increased by 10 per cent. Crude oil inventory held at the Cushing storage hub hit a record high of 49.8 10⁶ barrels (7.9 10⁶ m³) on December 28, 2012. Inventory levels have continued to rise in early 2013, with crude oil ending stocks reaching 51.9 10⁶ barrels (8.2 10⁶ m³), up 78.2 per cent from a year ago. Limited pipeline capacity has restricted crude oil movements out of the U.S. mid-continent. Crude prices in the region are relatively low compared with U.S. crude prices outside of the region. U.S. crudes such as Louisiana Light Sweet

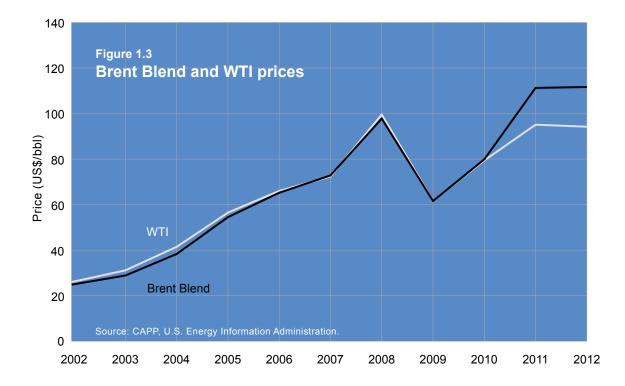
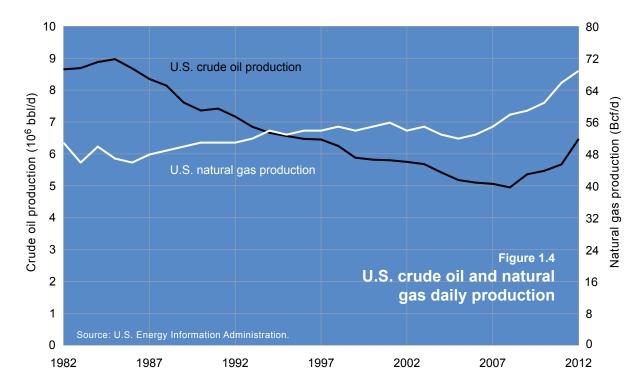

and Alaska North Slope trade at a premium to WTI. The transportation constraints have also resulted in producers competing with each other for pipeline space and using more expensive transportation alternatives, such as rail, truck, or barge. Rail transportation is discussed in more detail in **Section 3.2.4.5**.

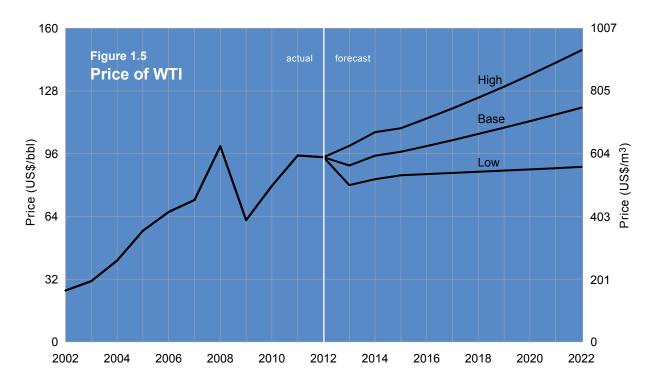
Figure 1.3 depicts the yearly average Brent price and the yearly average WTI price from 2002 to 2012. The historical relationship between the two benchmark prices has been reversed. From 2002 to 2006, WTI averaged US\$0.81/bbl to \$3.14/bbl higher than Brent annually, reflecting quality differences, the cost of shipping, and localized market conditions. From 2007 to 2009, prices were relatively on par. WTI crude prices started to trade at a discount to Brent in 2010, with the discount widening over the last three years. The 2012 WTI discount averaged US\$17.45/bbl, compared with the 2011 average of US\$16.15/bbl.

1.1.3 North American Crude Oil Prices

North American crude oil prices are based on the price of WTI crude oil at Cushing, which is the underlying physical commodity market for the New York Mercantile Exchange (NYMEX) for light crude oil contracts. WTI crude oil has an API of 40 degrees and a sulphur content of less than 0.5 per cent.

As discussed earlier, the increase in crude oil production has been a contributing factor to the WTI discount relative to the Brent price. Unconventional oil production has significantly added to the U.S. supply growth over the last six years. Multistage fracturing completion technology is being used to access crude oil in reservoirs previously considered uneconomic. This new technology has resulted in a substantial increase in U.S. domestic production.




As illustrated in **Figure 1.4**, since 2009 the declining trend in crude oil production in the United States has reversed, and production has increased from $5.00 \ 10^6 \ bbl/d$ (0.79 $10^6 \ m^3/d$) in 2008 to 6.47 $10^6 \ bbl/d$ (1.03 $10^6 \ m^3/d$) in 2012, a 29 per cent increase. **Figure 1.4** also shows that U.S. gas production has increased in recent years as well.

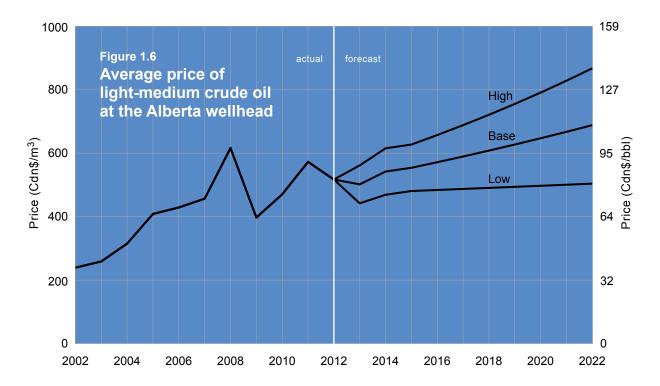
New plays, like the Bakken Formation in North Dakota and the Eagle Ford Formation in Texas, are drilled using horizontal wells and multistage hydraulic fracturing techniques. In North Dakota, crude oil production averaged 662 10³ bbl/d (105 10³ m³/d) in 2012, an increase of 114 per cent from 2010 levels. Production from the Bakken accounts for 90 per cent of North Dakota's total oil production, which has surpassed Alberta's conventional crude oil production. The transportation infrastructure, which includes oil pipelines, truck, and rail, is constrained in the U.S. mid-continent region due to the significant growth in crude oil production in 2012. The increased supply of light crude has also depressed Canadian light crude prices, which are competing with Bakken crude for pipeline space. In Texas, onshore production of crude oil averaged 1986 10³ bbl/d (316 10³ m³/d) in 2012, an increase of 70 per cent from 2010 levels. U.S. crude oil production is further discussed in **Section 4.2.1.2**.

In 2012, the WTI price averaged US\$94.21/bbl, down US\$0.90/bbl from 2011. The ERCB projects WTI to average US\$90.00/bbl in 2013, with a range from US\$80.00/bbl to US\$100.00/bbl. **Figure 1.5** shows historical and forecast WTI prices at Cushing.

As illustrated in **Figure 1.5**, the price of WTI is expected to increase throughout the forecast period. The nearterm WTI forecast reflects the expected increase in world oil supply, moderating demand in OECD countries, concern over the European recession and global economic activity, and the continued WTI discount due to pipeline constraints in parts of North America. The long-term forecast reflects expectations that transportation

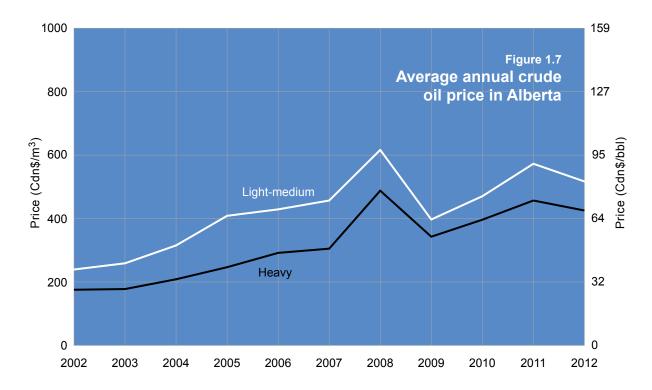
constraints will be alleviated and that current global economic conditions will improve. By 2022, WTI prices are projected to be US\$119.46/bbl, with a range from US\$89.25/bbl to US\$148.83/bbl.

The ERCB calculates light crude oil prices at Edmonton, Alberta, as a function of WTI prices at Cushing. The WTI price is adjusted for transportation and other charges between Edmonton and Cushing, including the exchange rate, as well as for crude oil quality. **Figure 1.6** shows historical and the ERCB's forecast prices for Alberta light-medium crude oil in Canadian dollars.


Table 1.1 compares 2011 and 2012 Alberta light-medium and heavy crude oil prices. In 2012, the average price of light-medium crude oil averaged Cdn\$82.14/bbl, down Cdn\$8.86/bbl from 2011. The ERCB projects the price of light-medium crude oil to average Cdn\$79.74/bbl in 2013, with a range of Cdn\$70.24/bbl to Cdn\$89.24/bbl.

As illustrated in **Figure 1.6**, the forecast price of light-medium crude oil is expected to increase moderately throughout the forecast period from 2013 to reach an average of Cdn\$109.38/bbl in 2022, with a range from Cdn\$80.10/bbl to Cdn\$137.85/bbl.

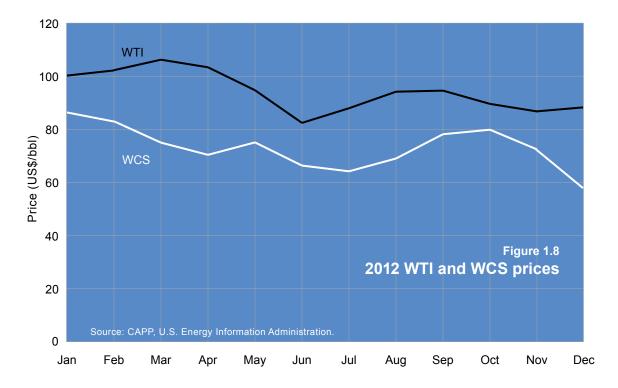
	Average annual p	Average annual price (Cdn\$/bbl)	
	2011	2012	
Alberta light-medium crude oil price	91.00	82.14	
Alberta heavy crude oil price	72.59	67.59	


Table 1.1 Alberta wellhead annual average crude oil prices
--

^a Prices from ERCB report ST3: Alberta Energy Resource Industries Monthly Statistics, which reflect Alberta Petroleum Marketing Commission (APMC) prices. The APMC average price represents the value of the average Crown sales in the province in dollar per cubic metre with respect to royalty oil delivered to the APMC at the field delivery point to which the oil was required to be delivered in that month.

In 2012, Alberta light-medium crude oil was priced at a discount relative to WTI due to increased production from the Bakken play in the United States. Demand for light crudes also fell as refineries in both the United States and Canada went down for unscheduled maintenance. In the short-term, the Alberta light-medium forecast reflects the expectation that light crude oil production will continue to increase in North America. Given the previously discussed pipeline constraints present in the U.S. mid-continent, Canadian light crudes are competing for pipeline space with production from the Bakken Formation in North Dakota. The long-term forecast for Alberta light-medium reflects the expectation that transportation constraints will be alleviated and demand for Canadian crudes will increase. The ability to diversify Canadian crude oil markets and increase access to U.S. Gulf Coast refineries will increase demand for Canadian crudes and help reduce the current light-medium crude oil discount.

Figure 1.7 illustrates the average annual price of Alberta light-medium and heavy crude oils. The differential between Alberta heavy and light-medium crudes averaged Cdn\$16.86/bbl, or 25.9 per cent, from 2002 to 2012. The heavy/light-medium differential in 2012 averaged Cdn\$14.55/bbl, or 17.7 per cent, compared with \$18.40/bbl, or 20.2 per cent, in 2011. The heavy/light-medium differential narrowed in 2012 due to the depressed light-medium price resulting from continued increases in light sweet crude oil production in North America. The heavy/light-medium differential is expected to average 18.5 per cent over the forecast period, wider than the most recent five-year average of 17.7 per cent. The differential in 2013 and 2014, at 20.6 per cent, is projected to remain wider than the five-year average as increased oil sands supply and tight pipeline space depress the price of heavy crudes.


Heavier Canadian crudes, such as Western Canadian Select (WCS),⁴ have shown deeper discounts compared with other world benchmark prices. In 2012, WCS averaged US\$73.14/bbl, trading at US\$21.07/bbl under the price of WTI. As illustrated in **Figure 1.8**, in the last months of 2012, the discount between WCS and WTI widened. In December, the WCS discount averaged US\$30.39/bbl. Heavy Canadian crudes have been discounted due to concerns over oversupply and pipeline constraints.

In late 2012, pipeline companies announced apportionment⁵ on many U.S. mid-continent pipelines. Producers are competing for pipeline space to transport their product to U.S. refineries. In response, some oil sands companies have begun using rail to transport crude bitumen and hedge against the risk of pipeline constraints. Rail use in the oil sands is further discussed in **Section 3.2.4.5**.

The market is also concerned with the rapid growth of production from the oil sands at a time when pipelines are already running full. Heavy Canadian crude prices fell as the market reacted to increased supplies. The concern was that added supply would compete for already tight space on pipelines carrying crude to the U.S. mid-continent. Also of concern is the series of closures to refineries in the U.S. Gulf Coast and the U.S. Midwest due to scheduled maintenance. Planned maintenance for refineries in the U.S. Midwest will reduce heavy refining

⁴ Western Canadian Select is produced out of western Canada and is made up of existing Canadian heavy conventional crude oil and crude bitumen blended with diluents.

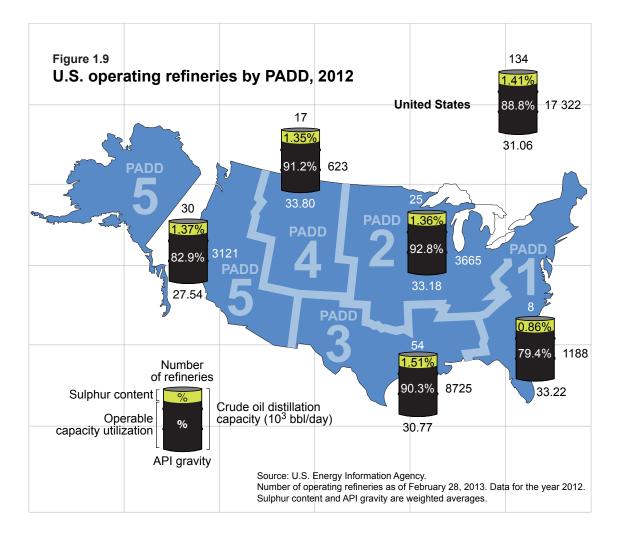
⁵ When shippers nominate more oil or oil products in a given month than the pipeline can transport, shipper volumes are apportioned (reduced) based on the tariff in effect. Apportionment can be caused by such factors as growing supply, increased demand, pipeline reconfigurations, reduced pipeline capacity, or refinery maintenance.

capacity by 313 10³ bbl/d (50 10³ m³/d) in the first quarter of 2013, approximately three times the average planned capacity reduction since 2008, and will significantly affect the demand for heavy Canadian crudes.

The deep discount on Canadian heavier crudes is not expected to be alleviated until demand for Canadian crudes is increased by the addition of heavier refinery capacity and the alleviation of pipeline constraints. British Petroleum's (BP) refinery modernization project at Whiting, Indiana, to increase heavy oil refinery capacity is expected to ease the heavy oil discount seen in recent months. Market diversification and the ability to transport Canadian crude to the U.S. Gulf Coast would also improve the discount between heavy Canadian crudes and other world benchmarks.

With increased production from the oil sands, Canada has become the United States' leading crude oil supplier. Total crude oil production in Alberta exceeds volumes required by Alberta and ex-Alberta domestic refinery demand, and the excess production is exported to the United States. The Petroleum Administration for Defense Districts (PADDs) 2 and 4 in the United States are the largest importers of Alberta heavy crude oil and upgraded bitumen, with a combined total refinery capacity of 4288 10³ bbl/d (681 10³ m³/d). Increased heavy oil upgrading capabilities at the Wood River refinery conversion project in Illinois (completed in 2011), Marathon Petroleum Corporation's Detroit heavy oil upgrade project (completed in 2012), and the BP refinery modernization project at Whiting, Indiana (due on stream in 2013), will allow PADD 2 and PADD 4 to take on increasing amounts of Alberta's heavier crudes.

Total refinery capacity in the United States increased marginally during the 1990s and 2000s with the debottlenecking of existing refineries. No new refineries have been built since the 1970s. Before the global economic recession in 2008 and 2009, product demand had increased significantly, resulting in U.S. refineries operating at high utilization rates since about 1993. More recently, depressed refinery margins have resulted in some U.S. refiners operating at lower utilization rates, temporarily idling, or shutting down.


With expected increases in both nonupgraded and upgraded crude oil bitumen supply over the forecast period, incremental pipeline capacity will be required to transport growing volumes to market. Consequently, many pipeline companies are moving ahead with planning and constructing new projects.

In June 2012, Enbridge Inc. (Enbridge) and Enterprise Products Partners LP's (Enterprise) Seaway Pipeline was reversed, transporting crude oil from Cushing to the Gulf Coast. Initial pipeline capacity was 150 10³ bbl/d ($24 \ 10^3 \ m^3/d$). In early 2013, the companies completed the first expansion, adding 250 10³ bbl/d ($40 \ 10^3 \ m^3/d$). Enbridge and Enterprise also plans to twin the pipeline, more than doubling Seaway's capacity to 850 10³ bbl/d ($135 \ 10^3 \ m^3/d$) by the first quarter of 2014.

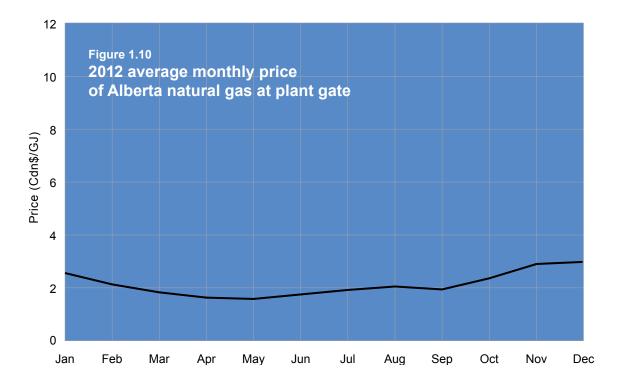
In January 2012, the proposed 830 10³ bbl/d (132 10³ m³/d) capacity Keystone XL project by TransCanada Corporation (TransCanada) was denied a U.S. regulatory permit. TransCanada has since announced it plans to build the southern leg of the Keystone XL project, the Gulf Coast project. Construction on the 830 10³ bbl/d (132 10³ m³/d) Gulf Coast Project began in August 2012, and the company expects the pipeline to be completed in 2013. The company has also re-applied for regulatory approval, excluding the southern portion, and expects an in-service date of late 2015. If approved by the U.S. State Department, the Keystone XL project in its entirety will deliver Canadian crude oil to Gulf Coast refineries in PADD 3, the largest refining region in the United States, as illustrated in **Figure 1.9**.

Other projects have been announced to move Canadian crude to the B.C. coast. Enbridge's 525 10³ bbl/d (83 10³ m³/d) Northern Gateway project will transport crude oil from Edmonton, Alberta, to a terminal in Kitimat, British Columbia. Enbridge has applied to the National Energy Board (NEB) for approval and hearings are currently under way. Kinder Morgan has announced plans to increase capacity on its Trans Mountain pipeline, which transports crude oil from Edmonton to the Greater Vancouver area. The pipeline capacity would increase from 300 10³ bbl/d (48 10³ m³/d) to 890 10³ bbl/d (141 10³ m³/d) by 2017. Kinder Morgan plans to submit an application to the NEB in late 2013. Both these projects will allow Canadian crude oil to be transported to overseas markets, as well as to the western United States PADD 5 region. In California (PADD 5), 90 per cent of its refinery capacity is able to process heavier crudes; however, California's Low Carbon Fuel Standard would have to be met. Additional pipeline projects are discussed in **Section 3.2.4**.

Figure 1.9 provides information on U.S. refineries by PADD. PADD 3 has the largest refinery capacity in the United States, with 54 operating refineries and a net crude oil distillation capacity of 8.7 10⁶ bbl/d (1383 10³ m³/d). PADD 3 was not previously viewed as the most likely market for Alberta crude oil because of inadequate pipeline infrastructure and its proximity to Mexican and Venezuelan crude oil production. However, traditional crude oil inputs to PADD 3 have been on the decline, suggesting a significant market opportunity for Alberta heavy crude oil producers. As a result, projects such as the discussed TransCanada Keystone XL project are under way to increase pipeline capacity to the area.

1.1.4 North American Natural Gas Prices

The long-term outlook for U.S. gas supply has changed with the growth in supply from shale gas. As illustrated previously in **Figure 1.4**, U.S. conventional gas supplies had a stable rate of increase from 1986 to 2001 and then began to decline from 2001 to 2005. Natural gas production in the United States has significantly increased since 2006. Multistage hydraulic fracturing technology has allowed for the economic development of shale gas plays that are responsible for the increase in production. When combined with horizontal drilling, this new completion technique results in high initial production rates. Total U.S. marketed gas production was 69.14 billion cubic feet per day (bcf/d) (1.9 billion [10⁹] m³/d) in 2012, a 33.3 per cent increase from 2005 levels.

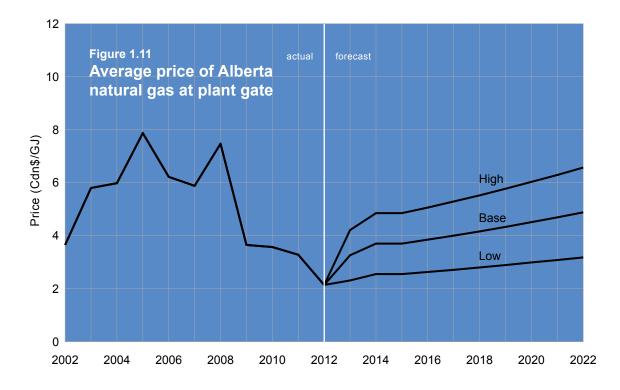

Increased U.S. natural gas production has resulted in low natural gas prices, as shale gas production has more than offset production declines from conventional resources and has exceeded demand growth in the United States. Projects to convert some of the liquefied natural gas (LNG) regasification terminals to liquefaction terminals are occurring to enable exports of domestic natural gas supplies to markets offering higher prices. In addition, new LNG export terminals have been proposed in both the United States and Canada.

In Canada, there have been several LNG export projects proposed on the B.C. coast as Canadian natural gas producers reach for new gas markets in Asia. Under increased competition from U.S. shale gas production, western Canada's gas exports have fallen by 21 per cent since 2007. Asian markets, with natural gas prices linked to crude oil prices, provide an attractive alternative to U.S. exports. To date, the NEB has approved export licences for Kitimat LNG Operating General Partnership, B.C LNG Export Co-operative LLC, and LNG Canada Development Inc. to export LNG from the B.C. coast to Asia-Pacific markets.

While North American crude oil prices have historically tracked international prices, natural gas prices in North America basically reflect the North American supply and demand situation, with little influence from the global gas market aside from the impact of LNG imports. Alberta natural gas prices are heavily influenced by the Henry Hub U.S. market price. The Alberta reference price forecast for natural gas was derived from the Henry Hub price, taking into account transportation differentials and the exchange rate.

Figure 1.10 shows the monthly Alberta reference price for natural gas in 2012. In the first quarter of 2012, natural gas prices fell to Cdn\$2.17 per gigajoule (GJ) as a result of warmer-than-expected weather and strong natural gas production in North America. As producers continued to drill, storage inventory levels increased and reached record highs going into the summer. In May, Alberta gas storage levels were 11 881 10⁶ m³ (422 bcf), 36 per cent higher than the five-year May average of 8738 10⁶ m³ (310 bcf). In May, the price of natural gas hit a low of Cdn\$1.58/GJ.

Natural gas prices began to rally as higher-than-expected seasonal temperatures in the summer increased demand due to air conditioning use and concerns moderated over storage levels in the United States. Alberta storage levels continued to climb until October, when they reached a high of 13 148 10⁶ m³ (467 bcf), 9.5 per cent higher


than the five-year October average of 12 003 10⁶ m³ (426 bcf). Natural gas prices reached their high in December, averaging Cdn\$2.98/GJ. Natural gas prices started to decrease again going into 2013 as mild winter conditions reduced demand.

The average Alberta reference price of natural gas in 2012 was Cdn\$2.14/GJ, compared with Cdn\$3.28/GJ in 2011, a 34.8 per cent decrease. In 2012, U.S. natural gas prices at Henry Hub decreased by 31.1 per cent compared with 2011 levels.

Figure 1.11 shows the historical and forecast average price of Alberta natural gas at the plant gate. The ERCB projects a base price of Cdn\$3.26/GJ for natural gas at the Alberta wellhead, with a range between Cdn\$2.31/GJ and Cdn\$4.21/GJ in 2013. Over the forecast period, the price of natural gas is projected to increase slowly to reach an average of Cdn\$4.88/GJ by 2022, with a range from Cdn\$3.18/GJ to Cdn\$6.57/GJ.

The forecast assumes that continued shale gas production in the United States will keep prices low in the short and medium term. As previously discussed, horizontal multistage fracturing technology has resulted in higher initial production rates for wells and will contribute to the increased natural gas supply. Additional demand for natural gas will arise from environmental incentives to switch fuel for electricity generation and, in the short term, price incentives, as well as LNG export projects.

The Alberta price parity of gas to light-medium oil on an energy content basis averaged 0.53 from 2002 to 2011. In 2012, the price parity averaged 0.16, compared with 0.22 in 2011. Over the forecast period, the gas-to-oil price parity is projected to average 0.26, as North American gas prices are projected to increase slowly relative to crude oil prices.

1.2 Oil and Gas Drilling and Completion Costs in Alberta

For over 30 years, the Petroleum Services Association of Canada (PSAC) has been providing cost estimates for typical oil and gas wells for the upcoming drilling season. PSAC defines a typical oil and gas well as a well that reflects the most common well type to be drilled in 2013 in western Canada. The cost estimates in **Figure 1.12** were obtained from the 2012 and 2013 PSAC Well Cost Studies. **Table 1.2** outlines the median well depth for each area, a major contributor to drilling costs. Many other factors influence well costs, including the economic environment, the type of commodity produced, the type of well (development versus exploratory), surface conditions, the type of production (sweet versus sour), drilling programs, well location, nearby infrastructure, and completion method.

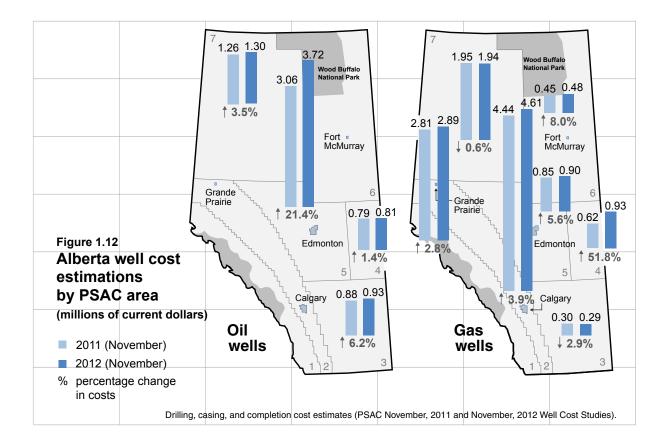

	Area 1	Area 2	Area 3	Area 4	Area 5	Area 6	Area 7
Gas wells							
Horizontal	3 651	2 508	1 294	671	1 970	259	2 063
Vertical	3 262	2 520	661	714	1 030	508	805
Oil wells							
Horizontal	2 426	1 923	957	756	1 375	622	1 477
Vertical	2 387	2 049	1 051	786	1 576	643	1 629

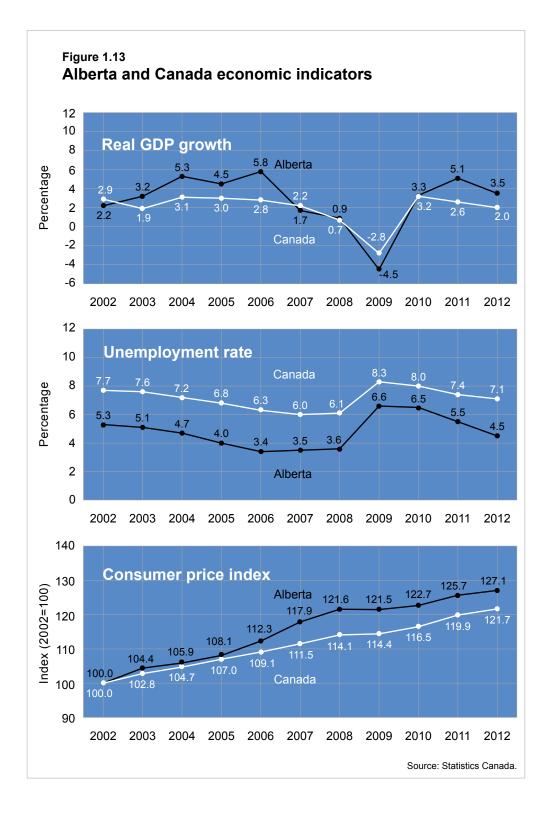
Table 1.2 Alberta median well depths by PSAC area, 2012 (m)*

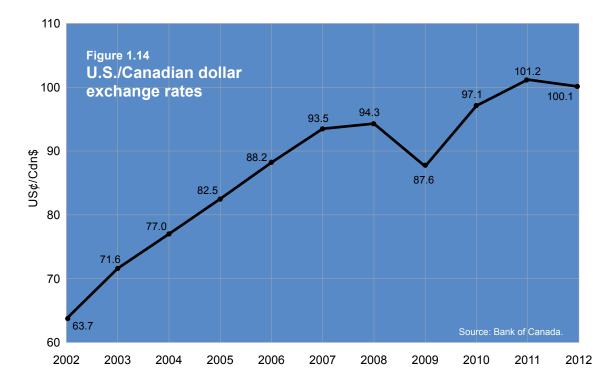
* PSAC defines the areas in Alberta as AB1, AB2, etc., and are referred to as Area 1, Area 2, etc. in this report. The PSAC area map is located in Appendix A.2.

As illustrated in **Figure 1.12**, the estimated cost to drill and complete a typical oil well increased from the previous year. The estimated cost of drilling and completing a typical oil well in the winter of 2012–2013 ranged from as low as \$0.81 million in Area 4 (East-Central Alberta) to as high as \$3.72 million in Area 5 (Central Alberta). According to PSAC data, an average vertical oil well in Area 3 cost \$0.93 million. Completion costs represented 47.9 per cent of total drilling and completion costs. For an average horizontal well located in Area 5, completion costs represented 69.9 per cent of total drilling and completion costs. Of total completion costs, completion fluids represented 43.9 per cent. The average estimated cost to drill and complete an oil well across the PSAC areas increased by 8.1 per cent from the previous year.

Gas well drilling and completion costs are also projected to increase. Estimated costs to drill and complete a typical gas well in the winter of 2012–2013 were highest in Area 2 (Foothills Front) at over \$4.61 million. In Area 3 (Southeastern Alberta), a typical gas well was estimated to cost \$0.29 million to drill and complete. According to PSAC data, completion costs for an average vertical well in Area 3 represented 50.2 per cent of total drilling and completion costs. For an average horizontal well located in Area 1, completion costs represented 54.7 per cent of total drilling and completion costs, and completion fluids represented 41.9 per cent of completion costs. The average estimated cost to drill and complete a typical gas well across the PSAC areas increased by 9.8 per cent from the previous year.

1.3 Economic Performance


1.3.1 Alberta and Canada


Figure 1.13 depicts the historical performance of major economic indicators for Alberta and Canada. Alberta real gross domestic product (GDP) growth has mostly outperformed Canadian real GDP growth over the past decade, particularly in the 2003–2007 timeframe. Average Alberta GDP growth from 2002 to 2012 was 2.9 per cent, compared with a Canadian average of 2.0 per cent. Over the same period, the unemployment rate in Alberta averaged 4.8 per cent while the Canadian unemployment rate averaged 7.1 per cent.

The higher growth and employment levels in Alberta put pressure on the Alberta economy, which resulted in higher levels of inflation. Since 2002, inflation in Alberta has averaged 2.5 per cent per year, while Canadian inflation has averaged 2.0 per cent. In 2012, Alberta inflation was unusually low and averaged around 1.1 per cent due to relatively weak energy, electricity, and housing prices.

Figure 1.14 illustrates the historical performance of the U.S./Canadian dollar exchange rate between 2000 and 2012. The exchange rate is an economic parameter that affects both the Canadian and Alberta economies.

The U.S./Canadian dollar exchange rate averaged US\$1.00 in 2012, compared with US\$1.01 in 2011. The exchange rate began the year averaging US\$0.99 in January 2012 and averaged US\$1.01 in December 2012, exhibiting relative stability. The US/Canadian dollar exchange rate is projected to average US\$0.98 for the

remainder of the forecast period as the U.S. dollar is expected to strengthen compared with the Canadian dollar. Throughout 2012, the Bank of Canada kept the bank rate at 1.00 per cent. The Bank of Canada also expressed concern over Canadian household debt, which could trigger financial instability if interest rates were to rise, increasing the potential for personal bankruptcies and home foreclosures.

1.3.2 The Alberta Economy in 2012 and the Economic Outlook

The ERCB forecast of Alberta real GDP and other economic indicators is shown in **Table 1.3**. Alberta real GDP is estimated to have increased by 3.5 per cent in 2012, compared with 5.1 per cent in 2011. Real GDP is forecast to increase by 3.0 per cent in 2013 and to continue to grow at a trend of 3.0 per cent from 2014 to 2022 based on the expectation of strong hydrocarbon development and exports. Alberta's inflation rate was 1.1 per cent in 2012, compared with the national inflation rate of 1.5 per cent.

Table 1.3	Major Alberta	economic indica	tors, 2012–2022 (per	cent)

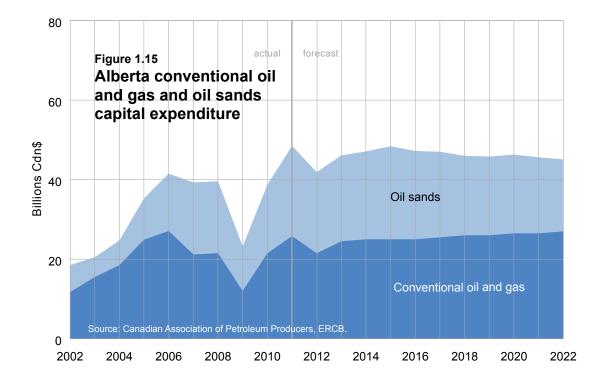
	2012	2013	2014–2022ª
Real GDP growth	3.5	3.0	3.0
Population growth	2.5	2.0	1.7
Inflation rate	1.1	2.2	2.4
Unemployment rate	4.5	4.5	4.4

^a Average over 2014–2022.

Economic growth is projected to slow in 2013 as oil and gas activity continues to recover from low prices and continued Canadian crude oil discounts. There were 8422 wells drilled in Alberta in 2012, compared with 9894 in 2011, a decrease of 1472 wells, or 15 per cent.

The ERCB estimates that oil sands capital expenditures decreased to \$20.4 billion in 2012, compared with \$22.7 billion in 2011. Investment is predicted to increase to \$21.6 billion in 2013 and peak in 2015 at \$23.4 billion. In 2012, some oil sands companies announced that they were cutting their capital budget spending and delaying the development of upcoming projects as a result of increased pressure from lower-cost conventional oil development in Canada and the United States.

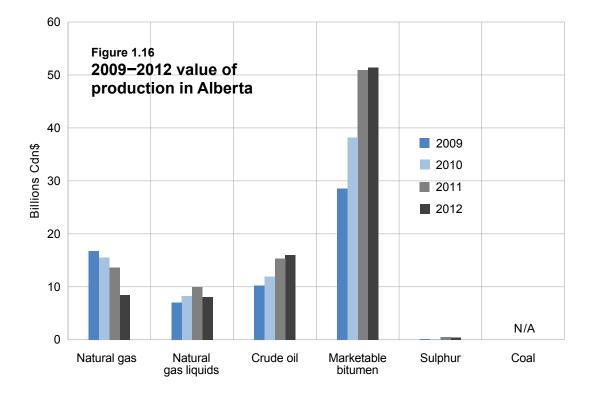
Conventional oil and gas expenditures have rebounded significantly since the 2009 level of \$12 billion and reached \$25.8 billion in 2011 as activity in conventional basins has shifted to the application of capital-intensive horizontal wells and multistage fracturing to conventional oil and liquids-rich gas plays. Conventional oil and gas expenditures are estimated to decrease to \$21.5 billion in 2012. As natural gas prices decreased, producers drilled fewer dry gas wells in Alberta. As a result, gas well connections were down by 51 per cent, lowering drilling costs in 2012. Alberta land sales also significantly declined from 2011 levels as companies cut back on their capital spending plans. Investment in conventional oil and gas is expected to increase over the forecast period as producers continue to use the more costly horizontal wells and multistage fracturing technology.


Figure 1.15 profiles the historical and projected investment in Alberta's conventional oil and gas industry and in the oil sands industry.⁶ The sharp decline in 2009 was followed by an immediate rebound in 2010. This rebound in conventional oil and gas spending occurred in a relatively mature oil and gas basin in an environment of depressed gas prices. The continued application of horizontal wells combined with multistage fracturing technology is expected to maintain conventional oil and gas investment throughout the forecast period close to current levels.

The forecast of capital spending for oil sands is consistent with the ERCB's forecast for upgraded and nonupgraded bitumen production.

As shown in **Figure 1.15**, oil sands-related expenditures are projected to increase by the middle of the decade to meet the anticipated increases in upgraded and nonupgraded bitumen production. Combined with the recovery in conventional oil and gas expenditures, total oil and gas investment is projected to exceed the levels of capital spending experienced during the 2006–2008 peak.

During the forecast period, nonupgraded bitumen production is forecast to increase at an average annual rate of 7 per cent. Upgraded bitumen production is projected to increase at an average annual rate of 3 per cent. Virtually all of this crude bitumen production increase will leave the province, providing export-led economic growth for the province.


⁶ Historical statistics obtained from the Canadian Association of Petroleum Producers (CAPP) *Statistical Handbook* (2011 data). Capital expenditures for 2012 are estimates.

The value of Alberta's energy resource production for 2009 to 2012 is depicted in **Figure 1.16**. In 2012, the total value of production decreased by 7 per cent relative to 2011. However, the total value of Alberta's energy resource production increased by 34 per cent relative to 2009 levels. The value of upgraded and nonupgraded bitumen production has significantly exceeded the value of natural gas production, a trend that is expected to continue throughout the forecast period. Since 2009, the value of upgraded and nonupgraded bitumen production has increased by 78 per cent, whereas the value of natural gas production has decreased by 50 per cent. In 2012, combined upgraded and nonupgraded bitumen revenues were greater than the combined revenues from conventional gas, conventional crude oil, natural gas liquids, and sulphur.

The total economic value of Alberta's energy resource production for 2012 to 2022 is shown in **Table 1.4**. Production from upgraded and nonupgraded bitumen derived from the oil sands will more than offset the decline in conventional resource production, increasing from 61 per cent of total revenues in 2012 to an average of 71 per cent of total annual revenues from 2015 to 2022.

Based on the projected price and production forecasts, investment in mining, upgrading, and in situ bitumen projects will continue to drive Alberta's production and export growth and the overall Alberta economy. In turn, Alberta's economic growth will continue to be a strong contributor to Canada's economic growth.

Table 1.4 Value of annual Alberta energy resource production (millions of current dollars)

	2012	2013ª	2014ª	2015-2022 ^{a,b}
Conventional crude oil	16 020	16 367	17 487	17 399
Nonupgraded bitumen	20 882	24 334	28 514	53 844
Upgraded bitumen	30 554	31 280	35 721	46 314
Marketable gas	8 432	12 151	13 274	13 399
Natural gas liquids	8 105	8 319	8 718	9 133
Sulphur	435	285	287	291
Coal	n/a	n/a	n/a	n/a
Total	84 427	92 737	104 003	140 380

^a Values calculated from the ERCB's annual average price and production forecasts; columns may not add up due to rounding.

^b Annual average over 2015–2022.

HIGHLIGHTS

A discussion of the geological framework of the Western Canada Sedimentary Basin is included.

A discussion of Alberta's petroleum systems is included.

Alberta's shale- and siltstone-hosted hydrocarbons are discussed.

The methods the ERCB uses to estimate resources and determine reserves are given.

The reserves framework employed in the report is detailed.

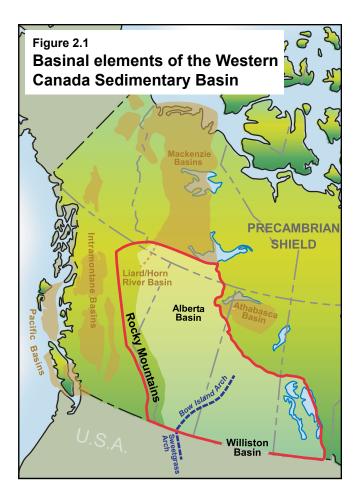
2 RESOURCE ENDOWMENT

Of Alberta's many natural resources, this report focuses on energy resources namely, petroleum hydrocarbons and coal. Resource appraisal is performed by the Energy Resources Conservation Board (ERCB) in the fulfillment of its legislated mandate.

The resource appraisal function includes geological survey, resource estimation, and reserve determination activities at the ERCB. These activities are done in a framework that provides consistent year-to-year comparisons of energy development in Alberta.

2.1 Geological Framework of Alberta¹

2.1.1 Western Canada Sedimentary Basin


The overall stratigraphic sequence of Alberta consists of a northeast-thinning wedge of sedimentary rocks. This wedge comprises three thick packages of rock most simply described as a carbonate succession sandwiched between two clastic successions. These sedimentary strata lie overtop a crystalline basement of igneous and metamorphic rock of Precambrian age that forms the foundation of the modern North American continent.² The thickness of the sedimentary wedge tapers to zero in northeastern Alberta where the crystalline basement is exposed as part of the Canadian Shield.

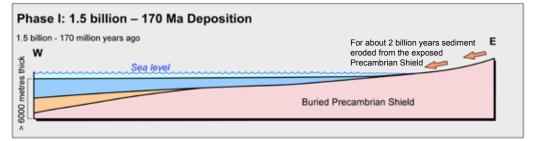
The lower clastic succession is restricted to the Rocky Mountains. It is composed of thick metamorphic quartzite and slate rocks of Precambrian age and overlying sedimentary strata of Cambrian to Ordovician age. The middle carbonate succession is composed mainly of limestones, dolostones, and evaporites of Devonian to Mississippian age. The upper clastic succession is Triassic to Tertiary in age.

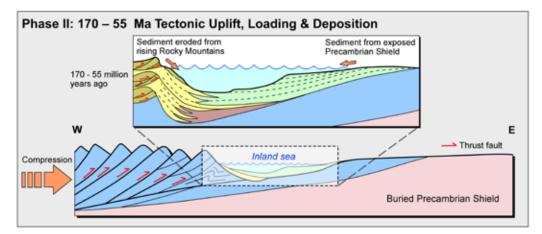
Both the middle carbonate and the upper clastic successions cover most of Alberta. Just beneath the modern land surface is a major unconformity that separates the youngest bedrock from gravels, thick glacial deposits, and modern alluvium.

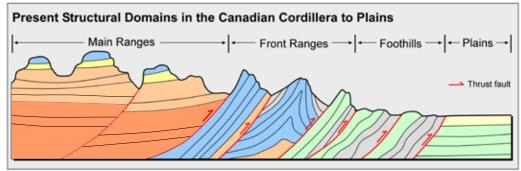
¹ The *Geological Atlas of the Western Canada Sedimentary Basin* contains a full description of Alberta's geological history and forms the basis for the summary in this section. The atlas is available through the ERCB's Alberta Geological Survey, a co-sponsor of the atlas.

² The crystalline basement is the North American craton (Laurentia) and is commonly referred to as the Precambrian Shield in western Canada. Laurentia was created almost 2 billion years ago by the amalgamation of older continents; some from Earth's original crust formed about 4 billion years ago.

The continental margin and structural trough that received sediments that comprise these three thick packages are collectively known as the Western Canada Sedimentary Basin (WCSB). The WCSB is often divided into regional basinal and sub-basinal elements including the Alberta Basin, the Williston Basin, and the Liard/Horn River Basin, as shown on **Figure 2.1**.

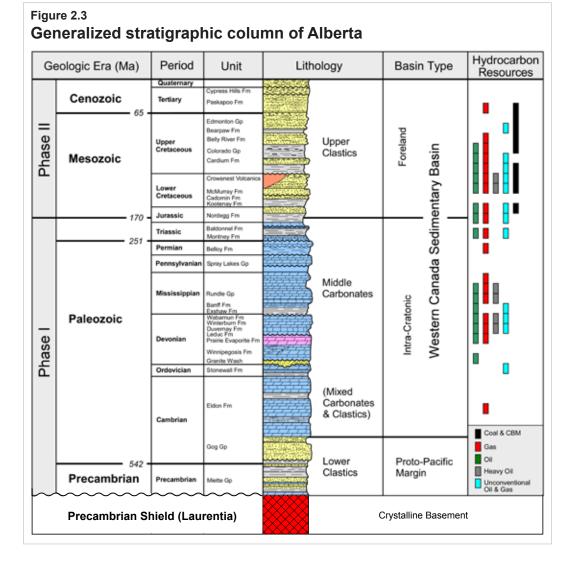

The geological origin and structure of Alberta's strata ultimately determine the type and extent of Alberta's energy resources. The overall geological history of Alberta falls into two main phases:


- Phase I lasted from 1.5 billion years ago to about 170 million years ago. It was characterized first by deposition
 in a shallow sea lying along the passive continental margin of the proto-Pacific ocean.³ This was followed by
 deposition within a shallow, interior continental seaway. This seaway marked the formation of an intracratonic
 basin, formed indirectly in association with uplift and mountain building far to the southwest of Alberta. The
 lower clastic and middle carbonate successions were deposited during Phase I.
- Phase II started about 170 million years ago and continues to the present day. It is characterized by uplift and structural deformation, which formed the Rocky Mountains and mountain ranges farther west. Loading of the


³ During phase I, the continental mass (Laurentia) alternated between being a separate continent and existing as part of larger "supercontinents."

mountains onto the crust caused the shallow seaway of Phase I to deepen into a depositional trough called a foreland basin. Sediments from the rising mountains were shed eastward into the basin, gradually filling it in and causing the seas to retreat. Uplift abated about 55 million years ago, and the Alberta basin has undergone erosion ever since, with the exception of deposition related to glacial advances and retreats over the last two million years. The upper clastic succession was deposited during Phase II. These events are shown in **Figure 2.2**.

Figure 2.2 Geologic evolution of Alberta



* Drawings not to scale.

The geological record of events in Phases I and II is preserved in the strata of the WCSB. A simplified version of Alberta's strata is shown in **Figure 2.3**. The stratigraphy is formalized in ERCB's Table of Formations. The Alberta Geological Survey of the ERCB has begun a multi-year major review of the Table of Formations to ensure that it is fully aligned with the most recent North American Stratigraphic Code, released in 2005.

2.1.2 Alberta's Petroleum Systems

Petroleum is a naturally occurring organic mixture consisting predominantly of chain and ring molecules of carbon and hydrogen, with varying amounts of sulphur, nitrogen, and oxygen as impurities. Petroleum forms underground by the action of heat and pressure over millions of years on buried organic matter that originated as dead algal, plankton, and plant remains. Rock units sufficiently rich in organic matter to generate petroleum during burial are called source rocks. After petroleum generation begins, the petroleum is driven from the source rock and migrates along permeable strata and fractures until it is trapped by favourable geological configurations of low-permeability rock or escapes to the surface.

Not all of the petroleum generated in source rocks will migrate; much is left within the source beds themselves. Many of these source rocks are shales and are the targets for many recent unconventional plays. Coal beds are a special type of source rock in which the organic material content is well over 50 per cent of total rock mass. Coalbeds can produce substantial amounts of methane.

The linked assemblage of source rock, migration routes, and ultimate traps is called a petroleum system. The Alberta Basin component of the WCSB contains at least eight petroleum systems associated with the following major source rocks:

- Middle Devonian System—sourced by basinal marine laminites of the Keg River/Winnipegosis formations
- Upper Devonian System—sourced by basinal marine laminites of the Leduc-equivalent Duvernay and Cooking Lake–equivalent Majeau Lake formations
- Upper Devonian System—sourced by basinal laminites of the Cynthia Member of the Nisku Group
- Uppermost Devonian and lowermost Mississippian System—sourced by the basinwide marine mudstones of the Exshaw Formation⁴
- Middle Triassic System—sourced by the marine phosphatic siltstones at the base of the Doig Formation
- Lower Jurassic System—sourced by the marine lime muds of the Nordegg (Gordondale) Member of the Fernie Group
- · Lower Cretaceous System—sourced by the continental coals and carbonaceous shales of the Mannville Group
- Upper Cretaceous System—sourced by the marine mudstones of the Colorado Group, principally the First and Second White Speckled Shales and the Fish Scales Zone

The Exshaw, Nordegg, and Duvernay source rocks are thought to have supplied most of the hydrocarbons in the Alberta Basin, and hydrocarbon accumulations within upper systems can be sourced from lower systems. For example, a likely source for the Lower Cretaceous crude bitumen deposits is the Lower Mississippian Exshaw Formation.

Conventional oil and gas pools are found throughout the middle carbonate and upper clastic successions. Little oil and gas is known to occur in the lower clastic succession, and the crystalline basement has none. Coals and coalbed methane (CBM) are found within the Jurassic-, Cretaceous-, and Tertiary-age portions of the upper clastic succession. Heavy oil pools and crude bitumen⁵ deposits occur mostly in Cretaceous-age strata at the shallow updip edge of the Alberta Basin, near the contact of the sedimentary successions with the underlying

⁴ The Exshaw Formation of the Alberta Basin is generally equivalent to the Bakken Formation found within the Williston Basin centered in North Dakota.

⁵ Crude bitumen is extra heavy oil that in its natural state will not flow to a well. Most bitumen in Alberta has been formed by the biodegradation of lighter crude oils.

crystalline rocks of the Precambrian basement. There is also bitumen in the middle carbonate succession directly underneath.

In addition to these accumulations, there is widespread biogenic generation of methane in the shallow subsurface, mostly found in unconsolidated glacial deposits and shallow coal-bearing bedrock units. This gas is pervasive but does not occur in commercial quantities and sometimes is a geological hazard in shallow water wells in Alberta.

2.1.3 Energy Resource Occurrences – Plays, Deposits, and Pools

Estimates of potential volumes of hydrocarbon generation and migration can be quantified for petroleum systems through detailed basin analysis. Petroleum-system analyses are not generally performed at scales applicable to issues of resource conservation and industry regulation. Instead, each petroleum system can be subdivided into geological plays.

A geological play can be defined as a set of known or postulated oil and/or gas accumulations (pools and deposits⁶) within a petroleum system sharing similar geological, geographic, and temporal properties, such as source rock, migration pathways, timing, trapping mechanism, and hydrocarbon type. The geographic limit of each play represents the limits of the geological elements that define the play. An example of a geological play in Alberta would be the Pembina Nisku Formation pinnacle-reef sour-gas play.

It is common practice for industry to categorize exploration and development opportunities in terms of geological plays. The ERCB does not currently designate or otherwise formally declare geological plays. The ERCB does designate oil sands areas, coal fields, oil and gas pools and fields, and strike areas. These constructs were originally congruous with geological plays, but some have devolved into administrative entities as more geological plays became recognized within and across their boundaries. The ERCB is considering designating play areas where unconventional resource development is expected to take place.

The ERCB has begun assembling a catalogue of geological plays in Alberta from various past studies and summarizing Alberta's energy resources and reserves in a geological-play context.

2.2 Resource Endowment of Alberta's Energy Resources

Alberta has access to a treasure trove of energy resources: coal, bitumen, and conventional and unconventional oil and gas. Coal seams underlie nearly half of Alberta and have been commercially developed for nearly 150 years by several thousand small, and several dozen large, surface and underground mines. Recently, natural gas from some of those coal seams, known as coalbed methane or CBM, has begun to be recovered, and the full extent of development potential is still unknown. Other ways of exploiting Alberta's vast coal resources (the largest in Canada), such as through in situ gasification or remote mining, hold out the potential for additional future development.

⁶ In general, pools are discrete accumulations of hydrocarbons, whereas deposits are widespread continuous accumulations of hydrocarbons and coal. Pools also can be commingled into larger administrative units.

The ERCB has conducted numerous assessments of the extent of Alberta's oil sands. Consequently the ERCB is confident that there are approximately two trillion barrels of crude bitumen in place. It forms one of the very largest known petroleum accumulations in the world, ranking with the Middle East, Venezuela, Russia, and the United States. While only a relatively small portion (less than ten per cent) is known to be recoverable with current technology and anticipated economics, this figure is large enough to assure a source of production for many decades into the future. Additionally, should other portions of the oil sands prove commercial, as seems reasonable given the history of worldwide resource extraction, bitumen production could occur for a long period of time.

Conventional oil and gas have been produced for more than 100 years and, after the discovery of oil at Leduc in 1947, has been extensively developed, adding substantial wealth to the province. The WCSB is predominately a gas-prone basin with commercial quantities of natural gas having been found throughout almost the entire province. Oil pools are also widely distributed throughout the province but tend to be in several large clusters. Alberta produces almost three-quarters of Canada's natural gas and almost half of Canada's oil.

As the conventional production of oil and gas continues to decline, "unconventional" recovery methods and the exploitation of "unconventional" reservoirs are on the rise. Reserves and production of crude oil have increased in the last several years, breaking a trend of decades of decline. Natural gas reserves and production continue to decline, but an increasingly higher percentage comes from unconventional sources.

Adding to this resource legacy is a new study demonstrating that shale gas and other hydrocarbons are significant in Alberta and could potentially be developed for many decades to come.

2.2.1 Shale Hydrocarbons

In 2012, the ERCB released the report *Summary of Alberta's Shale- and Siltstone-Hosted Hydrocarbon Resource Potential* (ERCB/AGS Open File Report 2012-06). The report provides baseline data, information, and understanding of the geology, distribution, reservoir characteristics, and hydrocarbon resource potential of key shale and siltstone units in Alberta.

Initially, the study focused on shale gas in the formations for which industry had shown interest. Later it was determined that many of the formations analyzed also contained a significant amount of natural gas liquids and oil. Therefore, the study was expanded to include all shale- and siltstone-hosted hydrocarbons.

Hydrocarbons hosted in conventional reservoirs were not included in the evaluation. In cases where conventional, tight (low permeability), and shale resources were present in a rock formation, only the shale- and siltstone-hosted hydrocarbons were evaluated

In the report, natural gas refers to methane (C₁), natural gas liquids refer to C₂ to C₆ hydrocarbons, and oil refers to C₇ and larger hydrocarbons.

Five units showing immediate potential in Alberta were included in the study: the Duvernay Formation, the Muskwa Formation, the Montney Formation, the Nordegg Member, and the basal Banff and Exshaw formations

(sometimes referred to as the Alberta Bakken by industry). Strictly speaking, the Montney Formation is not a "shale" target. In Alberta, the Montney Formation is dominated by siltstone and is included here because it is a target for unconventional resource development. The study also included an assessment of the Wilrich Formation. The assessments of the basal Banff/Exshaw, north Nordegg, and Wilrich are considered preliminary.

In addition, preliminary work without resource evaluation was done for the Rierdon Formation, the Colorado Group (and equivalent strata of the Smoky and Fort St. John groups), other Fernie Formation units, and the Bantry Shale member.

The study concluded that shale- and siltstone-hosted hydrocarbon resources are very large and present a very important potential energy supply for Alberta and the world. The results demonstrate the size and distribution of shale gas resources in Alberta and may be used to assist in the planning of resource development and environmental stewardship.

Table 2.1 summarizes the study's estimates of Alberta's shale- and siltstone-hosted hydrocarbon resource endowment for the six investigated units for which available data allowed at least a preliminary determination. The values represent the medium estimate (P_{50}) along with the P_{90} to P_{10} range of resource estimates for natural gas, natural gas liquids, and oil. The P_{50} value is considered to be the best estimate because it minimizes the expected variance from the unknown true value. The range of uncertainty is summarized by the P_{90} (low estimate) and P_{10} (high estimate) values.

The United States, arguably the world leader in the development of shale-hosted hydrocarbons, may contain up to 750 trillion cubic feet (Tcf) of technically recoverable gas and 24 billion barrels of technically recoverable oil.⁷

However, the resource estimates in **Table 2.1** must not be confused with recoverable reserves. Recoverable reserves for shales resources are generally determined after drilling and completing a well. Typically, recoverable reserves form a small percentage of unconventional resources, perhaps less than 5 per cent of the resource estimate. If as little as 1 per cent of the total natural gas estimate (3424 Tcf) from **Table 2.1** were to become recoverable by industry through drilling and completion, then Alberta will have added more than 34 Tcf to its reserve endowment. To put this in perspective, Alberta produced 3.3 Tcf of gas during 2012 and had approximately 36 Tcf of remaining established natural gas reserves at the end of 2012.

Geological and reservoir engineering constraints, recovery factors, and additional economic factors, as well as social and environmental considerations, will ultimately determine the potential recovery of this large resource.

Maps of the distribution of the P_{50} hydrocarbon resources in each formation can be found in **Appendix F**. More discussion on Alberta's shale gas resources is given in **Section 5.1.5**.

⁷ U.S. Department of Energy, 2011.

Formation	Average Adsorbed Gas Content (per cent)	Natural Gas (10º m³)	Natural Gas Liquids (10 ⁶ m³)	Crude Oil (10 ⁶ m³)
Duvernay	6.8	12 479	1 798	9 803
	(5.6–8.5)	(9 934–15 219)	(1 190–2 589)	(7 004–13 172)
Muskwa	6.9	11 812	2 350	18 296
	(4.1–10.5)	(8 132–14 839)	(949–4 181)	(11 884–25 412)
Montney	17.7	60 095	4 583	21 653
	(10.8–26.0)	(45 917–79 684)	(1 852–8 631)	(12 496–35 035)
Banff/Exshaw ^₅	5.7	993	15	3 946
	(3.2–10.0)	(446–1 975)	(5–35)	(1 426–7 143)
Nordegg ^b	18.2	4 164	228	6 011
	(4.6–34.8)	(1 968–7 905)	(77–555)	(3 161–10 550)
Wilrich ^b	33.7	6 918	327	7 611
	(6.2–59.2)	(3 237–16 007)	(109–707)	(3 206–27 380)
Total		96 461 (3 406 Tcf)	9 301 (58.6 10º bbls)	67 320 (423.6 10 ⁹ bbls)

^a The medium estimate (P₅₀) with low (P₅₀) and high (P₁₀) estimates below is shown. Data and interpretations were subjected to geostatistical analysis to provide a probabilistic resource evaluation, indicating P₁₀, P₅₀, and P₉₀ confidence results of initial petroleum-in-place.

^b Estimates based on preliminary data.

2.3 Resource Appraisal Methodologies

The ERCB uses the term "resource appraisal" to encompass all aspects of quantifying Alberta's in-place resources and recoverable reserves. To add clarity to the major components of resource appraisal, this report uses the phrase "resource estimation" to describe activities related to quantifying the amount of energy resources in the ground and the phrase "reserves determination" to describe activities related to quantifying the recoverable portion of these in-place resources (i.e., the established reserves).

2.3.1 Resource Estimation

The ERCB generates its own resource estimates. The in-place resources estimation process starts with the receipt by the ERCB of raw data submitted by energy resource industries, either as required by legislation or through regulatory applications or submissions, the vast majority of which is well or borehole data. ERCB geological staff use pertinent data such as geophysical well logs, cores and drill cuttings, core analysis, and well test data (such as pressure), together with industry or academic information such as reports, seismic data, or regional studies, to estimate petrophysical information and various geological surfaces and zones. These geological and petrophysical evaluations are used for both regulatory and resource appraisal purposes. Several techniques, including geostatistics, are used in generating a volumetric estimate of in-place resources for the various energy resources. As the ERCB's play catalogue is compiled, resource estimates for each play will be reported.

2.3.2 Reserves Determination

The ERCB determines two types of estimates of the recoverable portion of Alberta's in-place resources. The portion determined recoverable from known accumulations or deposits using today's technology is classified as

"established reserves." The portion determined from known and unknown resources using reasonably foreseeable technology is classified as the "ultimate potential." Established reserves are determined on an ongoing basis, whereas ultimate potentials usually result from major studies conducted periodically. These terms are defined in a following section.

In determining the established reserves of an energy resource, consideration is given to geology, pressures, production, technology, and economics. Geological factors are mainly considered when estimating in-place quantities. However, additional considerations are usually required to reduce the in-place quantity to a more likely developable quantity and to assure the existence and extent of the recoverable portion.

Alberta's production of oil and gas has predominantly come from conventional pools in which hydrocarbons have accumulated in concentrated quantities in porous and permeable reservoirs drainable by vertical wells. The ERCB determines reserves of conventional pools through accepted practice of geology-based volumetric estimation, production decline analysis, and material balance methodology.

Initially there is a higher level of uncertainty in the reserves estimates, but this level decreases over the life of a pool as more information becomes available and actual production is observed and analyzed. Analysis of production decline data is a primary method of determining recoverable reserves. It also provides a realistic estimation of the pool's recovery efficiency when it is combined with a volumetric or a material balance estimate of the in-place resource.

The determination of reserves in deposits is similar to the methods used to determine pool reserves. One or more factors are applied against an in-place volume or tonnage to determine the recoverable portion of the resource. These reserves are often estimated by three-dimensional geological models that routinely involve the data from hundreds or thousands of wells and drillholes.

2.3.3 Ultimate Potential

Ultimate potential estimates represent recoverable quantities. They are determined for each energy resource commodity over the entire province on the basis of a future end-of-the-day timescale. These estimates are the result of considering all development of an energy resource up to the time of the estimate and looking forward to cessation of exploration activity and the type of technology that might reasonably be expected to be used in the future. Future-based economic circumstances are also considered. These estimates form a reasonable and credible basis for longer term production forecasts and government policy decisions regarding energy resources.

2.4 Resources and Reserves Classification System

The ERCB reports the reserves of Alberta by commodity (crude bitumen, crude oil, natural gas, natural gas liquids, sulphur, and coal) based on the Inter-Provincial Advisory Committee on Energy (IPACE) system for uniform terminology and definitions in the estimating and publishing of hydrocarbon reserves information in Canada. The IPACE system was adopted by most government and national bodies for the use of reserves reporting in Canada in 1978 and has been in use since that time. The IPACE system was designed as a simple

categorization of reserves to facilitate understanding and transparency in reporting to the public. The key reserves definitions in the IPACE system are as follows:

- Initial volume in-place—the gross volume of crude oil, crude bitumen, or raw natural gas calculated or interpreted to exist in a reservoir before any volume has been produced.
- Established reserves—those reserves recoverable under current technology and present and anticipated economic conditions, specifically proved by drilling, testing, or production, plus that judgement portion of contiguous recoverable reserves that are interpreted to exist, from geological, geophysical or similar information, with reasonable certainty.
- · Initial established reserves—established reserves prior to the deduction of any production.
- Remaining established reserves—initial established reserves less cumulative production.
- Ultimate potential—an estimate of the initial established reserves which will have become developed in
 an area by the time all exploratory and development activity has ceased, having regard for the geological
 prospects of that area and anticipated technology and economic conditions. Ultimate potential includes
 cumulative production, remaining established reserves, and future additions through extensions and revisions
 to existing pools and the discovery of new pools.

The IPACE system was designed, and is most appropriate, for use with conventional oil and gas resources. Consequently, the ERCB has introduced alterations to the IPACE system to make it compatible for all energy resources, including coal. More recently, alterations have also been applied to unconventional resources, such as crude bitumen, to more fully report the resource endowment of Alberta.

Since 1978, and particularly since 1997, the mineral and petroleum industries have strived for tighter definitions of reserves to better suit the financial markets. These efforts include the promulgation of National Instrument (NI) 51-101 in 2003 for petroleum reserve reporting to Canadian securities regulators, the creation of and updates to the *Canadian Oil and Gas Evaluation Handbook* (COGEH),⁸ the Petroleum Resources Management System (PRMS),⁹ the "United Nations Framework Classification for Fossil Energy and Mineral Reserves and Resources 2009" (UNFC-2009), and NI 43-101¹⁰ for Canadian minerals (including coal) securities reporting. These efforts are under review by the ERCB, and a decision to either maintain or modify the IPACE system, or to adopt one or more of these newer frameworks, will be considered in the future.

⁸ The COGEH was prepared by the Calgary Chapter of the Society of Petroleum Evaluation Engineers and the then Petroleum Society of the Canadian Institute of Mining, Metallurgy and Petroleum (now part of the Society of Petroleum Engineers). COGEH forms the technical basis of NI 51-101.

⁹ The PRMS was prepared by the Society of Petroleum Engineers and reviewed and jointly sponsored by the World Petroleum Council, the American Association of Petroleum Geologists, and the Society of Petroleum Evaluation Engineers.

¹⁰ The technical basis of NI 43-101 is the "CIM Definition Standards on Mineral Resources and Mineral Reserves," prepared by the Canadian Institute of Mining, Metallurgy and Petroleum, known as CIM. This standard is itself based other international standards that have now been coalesced as the "International Template for Reporting of Exploration Results, Mineral Resources and Mineral Reserves," prepared by the Committee for Mineral Reserves International Reporting Standards, know as CRIRSCO.

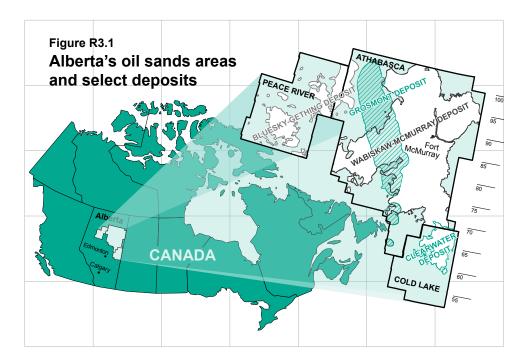
HIGHLIGHTS

Total bitumen production increased by 10 per cent, mineable production increased by 4 per cent, and in situ production increased by 17 per cent.

Upgraded bitumen production increased by 4 per cent.

3 CRUDE BITUMEN

Crude bitumen is extra heavy oil that in its natural state does not flow to a well. It occurs in sand (clastic) and carbonate formations in northern Alberta. The crude bitumen and the rock material it is found in, together with any other associated mineral substances other than natural gas, are called oil sands. For administrative purposes, the geological formations and the geographic areas containing the bitumen are designated as oil sands areas (OSAs). Other heavy oil is deemed to be oil sands if it is located within an OSA. Since some bitumen within an OSA will flow to a well, it is amenable to primary development and is considered to be primary crude bitumen in this report.


The three designated OSAs in Alberta are shown in **Figure R3.1**. Combined, they occupy an area of about 142 000 square kilometres (km²) (54 000 square miles). Contained within the OSAs are 15 oil sands deposits designated according to the specific geological zones containing the oil sands. The known extent of the two largest deposits, the Athabasca Wabiskaw-McMurray and the Athabasca Grosmont, as well as the Cold Lake Clearwater and Peace River Bluesky-Gething deposits, are also shown in the figure. As an indication of scale, the right-hand edge shows township markers that are approximately 50 km (30 miles) apart.

Depending on the depth of the deposit, one of two methods is used to recover bitumen. North of Fort McMurray, crude bitumen occurs near the surface and can be recovered economically by open-pit mining. In this method, overburden is removed, oil sands ore is mined, and bitumen is extracted from the mined material in large facilities using hot water. At greater depths, where it is not economical to recover the bitumen by mining, in situ methods are employed. In situ recovery takes place both by primary development, similar to conventional crude oil production, and by enhanced development. Cyclic steam stimulation (CSS) and steam-assisted gravity drainage (SAGD) are the two main methods of enhanced development whereby the reservoir is heated to reduce the viscosity of the bitumen, allowing it to flow to a vertical or horizontal wellbore.

3.1 Reserves of Crude Bitumen

3.1.1 Provincial Summary

The ERCB continually updates Alberta's crude bitumen resources and reserves on both a project and deposit basis. The remaining established reserves at December 31, 2012, are 26.68 billion cubic metres (10⁹ m³). This is a slight reduction from the previous year due to 0.12 10⁹ m³ of production. Of the total 26.68 10⁹ m³ remaining

established reserves, 21.40 10⁹ m³, or about 80 per cent, is considered recoverable by in situ methods, while the remaining 5.28 10⁹ m³ is recoverable by surface mining methods. Of the in situ and mineable totals, 4.11 10⁹ m³ is the remaining established reserve within active development areas. **Table R3.1** summarizes the in-place and established mineable and in situ crude bitumen reserves.

The changes, in million cubic metres (10^6 m^3) , in initial and remaining established crude bitumen reserves and cumulative and annual production for 2012 are shown in **Table R3.2**. Crude bitumen production in 2012 totalled 112 10^6 m^3 , with in situ operations contributing 58 10^6 m^3 .

The remaining established reserves in active development areas are presented in **Figure R3.2**. These project reserves have a stair-step configuration representing start-up of new large mining projects. The intervening years between additions are characterized by a slow decline due to annual production.

Recovery method	Initial volume in place	Initial established reserves	Cumulative production	Remaining established reserves	Remaining established reserves under active development
Mineable	20.8	6.16	0.87	5.28	3.69
In situ	272.3	21.94	0.53	21.40	0.42
Total	293.1	28.09 ^a	1.40	26.68 ª	4.11
	(1 845) ^b	(176.8) ^b	(8.8) ^b	(167.9) ^b	(25.9) ^b

Table R3.1	In-place volumes and established reserves of crude bitumen (10 ⁹ m ³)
------------	--

^a Any discrepancies are due to rounding.

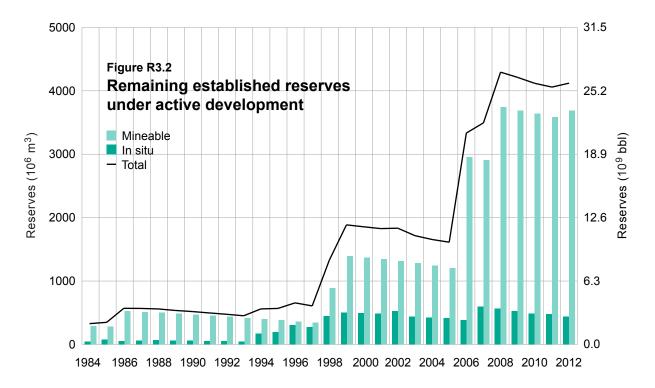
^b Imperial equivalent in billions of barrels.

	2012	2011	Change ^a
Initial established reserves			
Mineable	6 157	6 157	0
In situ	21 935	21 935	0
Total ^a	28 092	28 092	0
	(176 780) ^b	(176 780) [⊳]	
Cumulative production			
Mineable	874	820	+54°
In situ	532	474	+58°
Total ^a	1 406	1 294	+112°
Remaining established reserves			
Mineable	5 283	5 337	-54
In situ	21 403	21 461	-58
Totalª	26 686	26 798	-112
	(167 932) ^b	(168 637) ^b	
Annual production			
Mineable	54	52	+2
In situ	58	49	+9
Totalª	112	101	+11

Table R3.2 Reserve and production change highlights (10⁶ m³)

^a Any discrepancies are due to rounding.

^b Imperial equivalent in millions of barrels.


^c Change in cumulative production is a combination of annual production and all adjustments to previous production records.

3.1.2 Initial In-Place Volumes of Crude Bitumen

Efforts to update the province's crude bitumen resources and reserves began in 2003, and since then 11 of the 15 deposits have been updated. The Athabasca Wabiskaw-McMurray deposit, with the largest cumulative and annual production, was updated for year-end 2004 and subsequently revised in 2009 to take new drilling into account. The Cold Lake Clearwater deposit has the second largest production and was updated for year-end 2005. The northern portion of the Cold Lake Wabiskaw-McMurray deposit was also updated for year-end 2005. The Peace River Bluesky-Gething deposit was updated for year-end 2006.

In 2009, the ERCB completed a major review of the Cold Lake Upper and Lower Grand Rapids deposits and the Athabasca Grosmont deposit. The Athabasca Upper, Middle, and Lower Grand Rapids deposits and the Athabasca Nisku deposit were reassessed for year-end 2011. Bitumen pay thickness maps for these deposits are presented in **Appendix E**. Also included in **Appendix E** are two structure contour maps of the sub-Cretaceous unconformity. One is a regional map covering all the OSAs, the other is a map detailing the Cold Lake OSA.

Recently, industry has been actively exploring the Leduc Formation for potential bitumen resources west of Fort McMurray. Preliminary results indicate bitumen pay thickness may exceed 100 m.

The quality of an oil sands deposit depends primarily on the degree of saturation of bitumen within the reservoir and the thickness of the saturated interval. Bitumen saturation decreases as the shale or clay content within the reservoir increases or as the porosity decreases. The relative amount of bitumen is expressed as mass per cent in clastics (the percentage of bitumen relative to the total mass of the oil sands, which includes sand, shale or clay, bitumen, and water). In carbonates, the relative amount of bitumen is expressed as bitumen saturation (the percentage of the volume of pore space that contains bitumen). The selection of appropriate saturation and thickness cutoffs for determining resources and reserves varies depending on the purpose of the resource evaluation and other factors, such as changes in technology and economic conditions.

Initial in-place volumes of crude bitumen in each deposit were determined using geophysical logs, core, and core analyses. Initially, crude bitumen within the Cretaceous sands was evaluated using a minimum saturation cutoff of 3 mass per cent crude bitumen and a minimum saturated zone thickness of 1.5 mfor in situ areas. As of year-end 1999, the saturation cutoff was increased to 6 mass per cent for areas amenable to surface mining. The Athabasca Wabiskaw-McMurray; Athabasca Upper, Middle, and Lower Grand Rapids; Cold Lake Clearwater; Cold Lake Upper and Lower Grand Rapids; and the Peace River Bluesky-Gething deposits, as well as a portion of the Cold Lake Wabiskaw-McMurray deposit, were estimated using a 6 mass per cent saturation cutoff.

The crude bitumen within the carbonate deposits was originally determined using a minimum bitumen saturation of 30 per cent of pore volume and a minimum porosity value of 5 per cent. In the revision of the Athabasca Grosmont and Nisku deposits, a pore volume of 50 per cent and a porosity of 8 per cent were chosen as more appropriate cutoff values.

The ERCB believes that in measuring the quality of an oil sands area, cutoffs of 6 mass per cent for clastic bitumen deposits, and a pore volume of 50 per cent and porosity of 8 per cent for carbonate bitumen deposits, more accurately reflect the volumes from which bitumen can reasonably be expected to be recovered.

Within the Athabasca OSA is the ERCB-defined surface mineable area (SMA). It encompasses an area of 51½ townships north of Fort McMurray, covering the part of the Athabasca Wabiskaw-McMurray deposit where the total overburden thickness generally does not exceed 65 m. Given the thinner overburden, it is presumed that the main recovery method will be surface mining. Outside of the SMA, in the designated OSAs, in situ technology is the only viable recovery mechanism to date.

The defined boundaries of the SMA are simply for resource administration purposes and carry no regulatory authority. While the ERCB has estimated mineable reserves from unmined areas within the SMA for provincial resource assessment purposes, surface mining may not actually take place, possibly reducing the estimate of mineable reserves. Within the SMA, just under 50 per cent of the initial mineable bitumen in-place resource occurs at a depth of less than 25 m of overburden. Since the boundaries of the SMA are defined using the boundaries of townships, a few areas of deeper bitumen resources more amenable to in situ recovery are included (i.e., the extent of the SMA covers both mineable and in situ resources). Estimates of mineable bitumen exclude those volumes within the SMA that are beyond mineable depths. Conversely, in situ estimates include all areas outside the SMA, as well as deeper areas, generally greater than 65 m, within the SMA.

The crude bitumen resource volumes and basic reservoir data are presented on a deposit basis in **Appendix B** (**Tables B.1** and **B.2**) and are summarized by formation in **Table R3.3**.

The in-place resource values in **Table R3.3** represent the total crude bitumen accumulated throughout the deposit where the cumulative thickness is equal to or greater than 1.5 m; however, current and anticipated recovery operations often only develop the better-quality portion of this total. This developable portion (also known as mineable and exploitable) varies depending on the type of recovery technology employed. Recovery factors are normally applied against this developable portion to determine the established reserves. The parameters used to reduce the total in-place volumes to a developable subset are given in **Section 3.1.3**.

3.1.3 Established Reserves

There are two types of established reserves of crude bitumen: mineable reserves that are anticipated to be recovered by surface mining operations and in situ reserves that are anticipated to be recovered through wellbores using in situ recovery methods.

3.1.3.1 Surface-Mineable Crude Bitumen Reserves

With the 2008 expansion of the SMA and the subsequent updating of the Athabasca Wabiskaw-McMurray deposit (the only oil sands deposit in the SMA), the ERCB now estimates that the SMA contains 20.8 10⁹ m³ of initial bitumen in-place resource at depths most suitable to mining technologies, generally less than 65 m. For year-end 2008, economic criteria were applied to potentially mineable areas in the total in-place portion of the SMA. Economic strip ratio (ESR) criteria, along with a minimum saturation cutoff of 7 mass per cent bitumen

	Initial			Avera	ge reservoir pa	rameters
Oil sands area Oil sands deposit	volume in place (10 ⁶ m ³)	Area (10³ ha*)	Average pay thickness (m)	Mass (%)	Pore volume oil (%)	Average porosity (%)
Athabasca						
Upper Grand Rapids	5 817	359	8.5	9.2	58	33
Middle Grand Rapids	2 171	183	6.8	8.4	55	32
Lower Grand Rapids	1 286	134	5.6	8.3	52	33
Wabiskaw-McMurray (mineable)	20 823	375	25.9	10.1	76	28
Wabiskaw-McMurray (in situ)	131 609	4 694	13.1	10.2	73	29
Nisku	16 232	819	14.4	5.7	68	20
Grosmont	64 537	1 766	23.8	6.6	79	20
Subtotal	242 475					
Cold Lake						
Upper Grand Rapids	5 377	612	4.8	9.0	65	28
Lower Grand Rapids	10 004	658	7.8	9.2	65	30
Clearwater	9 422	433	11.8	8.9	59	31
Wabiskaw-McMurray	4 287	485	5.1	8.1	62	28
Subtotal	29 090					
Peace River						
Bluesky-Gething	10 968	1 016	6.1	8.1	68	26
Belloy	282	26	8.0	7.8	64	27
Debolt	7 800	258	25.3	5.1	66	18
Shunda	2 510	143	14.0	5.3	52	23
Subtotal	21 560					
Total	293 125					

Table R3.3 Initial in-place volumes of crude bitumen as of December 31, 2012

* ha = hectare.

and a minimum saturated interval thickness cutoff of 3.0 m, were applied. The ESR criteria are fully explained in Appendix III of *ERCB Report 79-H: Alsands Fort McMurray Project*. This method reduced the total initial mineable bitumen in-place resource of 20.8 10⁹ m³ to an initial mineable bitumen in-place resource of 10.3 10⁹ m³ as of December 31, 2008.

Factors were then applied to the initial mineable volume in place to determine the established reserves. A series of reduction factors were applied to take into account bitumen ore sterilized due to environmental protection corridors along major rivers, small isolated ore bodies, and the location of surface facilities (plant sites, tailings ponds, and waste dumps). Each of these reductions is thought to represent about 10 per cent of the total volume; therefore, each factor is set at 90 per cent. A combined mining and extraction recovery factor of 82 per cent is applied to this reduced resource volume. This recovery factor reflects the combined loss, on average, of 18 per cent of the in-place volume by mining operations and extraction facilities. The resulting initial established

reserves of crude bitumen is 6.16 10⁹ m³. As of December 31, 2012, the remaining established mineable crude bitumen reserve has decreased from 5.34 10⁹ m³ year-end 2011 to 5.28 10⁹ m³ as a result of production.

The remaining established crude bitumen reserves from deposits under active development as of December 31, 2012, are presented in **Table R3.4**. At the end of 2012, almost three quarters of the initial established reserves were under active development. Currently, Canadian Natural Resources Limited (CNRL Horizon), Shell Canada Energy Limited (Shell Muskeg River and Shell Jackpine), Suncor Energy Inc. (Suncor), and Syncrude Canada Ltd. (Syncrude) are the only producers in the SMA, with a combined cumulative bitumen production of 874 10⁶ m³. The Fort Hills (owned by Suncor, Total E&P Canada Ltd. [Total], and Teck Resources Ltd. [Teck]) and Imperial Oil/ExxonMobil Kearl projects are not yet producing bitumen but are considered to be under active development and are included in **Table R3.4**. Total's Joslyn North mine project was added to **Table R3.4** for 2012 as it was approved in 2010 and activity has begun at the site. The ERCB has adjusted the initial mineable volume in place and the initial established reserves for the Fort Hills mine based on recent drilling information and changes to the project area. In 2012, a hearing on the Shell Jackpine Expansion Mine project was held before a joint ERCB/federal panel and a decision is pending. Mine project applications currently under review are Shell Pierre River and Teck Frontier.

Production from the five current surface mining operations amounted to 53.78 10⁶ m³ in 2012, with 19.28 10⁶ m³ from the Syncrude project, 15.48 10⁶ m³ from the Suncor project, 7.45 10⁶ m³ from the Shell Muskeg River project, 5.58 10⁶ m³ from the Shell Jackpine project, and 5.98 10⁶ m³ from the CNRL Horizon project.

3.1.3.2 In Situ Crude Bitumen Reserves

The ERCB has determined an in situ initial established reserve for those areas considered suitable for in situ recovery methods. Reserves are estimated using cutoffs appropriate to the type of development and differences in reservoir characteristics. For each oil sands deposit with commercial development, the areas with potential for

Development	Project areaª (ha)	Initial mineable volume in place (10 ⁶ m³)	Initial established reserves (10 ⁶ m ³)	Cumulative production (10 ⁶ m ³)	Remaining established reserves (10 ⁶ m³)
CNRL Horizon	28 482	834	537	19	518
Fort Hills	17 864	556	382	0	382
Imperial/Exxon Kearl	19 674	1 324	872	0	872
Shell Muskeg River	13 581	672	419	78	341
Shell Jackpine	7 958	361	222	12	210
Suncor	19 155	990	687	315	372
Syncrude	44 037	2 071	1 306	449	857
Total Joslyn North	8 604	274	139	0	139
Total	159 355	7 100	4 564	874	3 690

Table R3.4 Mineable crude bitumen reserves in areas under active development as of December 31, 2012

^a The project areas correspond to the areas defined in the project approval.

thermal development were determined using a minimum continuous zone thickness of 10.0 m. For deposits with primary development, a minimum continuous zone thickness of 3.0 m (or lower if currently being recovered at a lesser thickness) was used. While some reserve estimates have been updated using a minimum saturation cutoff of 6 mass per cent bitumen, much of the current data is still based on the 3 mass per cent bitumen cutoff for most deposits. Future reserve estimates will be based on values higher than 3 mass per cent.

Recovery factors of 20 per cent for thermal development and 5 per cent for primary development were applied to areas that met the cutoffs. The deposit-wide recovery factor for thermal development is lower than some of the recovery factors for projects under active development to account for the uncertainty in the recovery processes and the uncertainty of development in the poorer-quality resource areas.

The volume of the in-place crude bitumen was reassessed in the Athabasca Grosmont deposit in 2009 and the Athabasca Nisku and Upper, Middle, and Lower Grand Rapids deposits in 2011. No reserves were estimated as there are no commercial projects currently operating within these deposits. Exploration has occurred and different recovery methods have been experimented with, but commercial operations have yet to be established. The ERCB estimates reserves only in deposits where commercial operations are in place.

In 2012, the in situ bitumen produced was 57.72 10^6 m³, an increase from 49.20 10^6 m³ in 2011. Cumulative production within in situ areas now totals 532.1 10^6 m³, of which 343.1 10^6 m³ is from the Cold Lake OSA. The remaining established reserves of crude bitumen from in situ areas decreased from 21.46 10^9 m³ in 2011 to 21.40 10^9 m³ in 2012 due to production of 0.06 10^9 m³.

The ERCB's 2012 estimate of the established in situ crude bitumen reserves under active development is shown in **Table R3.5**. Information on experimental schemes has been removed from the table due to the limited number of experimental schemes and the confidential nature of the associated production data.

The ERCB has assigned initial volumes in place and initial and remaining established reserves for commercial projects and primary recovery schemes where all or a portion of the wells have been drilled and completed. An aggregate reserve is also shown for all commercial projects and primary recovery schemes within a given oil sands deposit and area. Initial established reserves under primary development are based on a 5 per cent average recovery factor. In Peace River, however, a 10 per cent recovery factor, based on production, is used. Primary schemes in Athabasca undergoing enhanced recovery by polymer injection or waterflooding have an additional 10 per cent recovery factor applied. The application of various steaming strategies and project designs are reflected in the recovery factors of 40, 50, and 25 per cent for thermal commercial projects in the Peace River, Athabasca, and Cold Lake OSAs, respectively.

The remaining established reserves of crude bitumen within active in situ project areas is estimated to be $418.6 \ 10^6 \ m^3$, a decrease from 2011's 476.4 $10^6 \ m^3$ due to production.

3.1.4 Ultimate Potential of Crude Bitumen

The ultimate potential of crude bitumen recoverable by in situ methods is estimated to be 33 10⁹ m³ from Cretaceous clastic sediments and 6 10⁹ m³ from Paleozoic carbonate sediments. Nearly 11 10⁹ m³ of bitumen was

Development	Initial volume in place (10 ⁶ m³)	Recovery factor (%)	Initial established reserves (10 ⁶ m³)	Cumulative production ^ь (10 ⁶ m³)	Remaining established reserves (10 ⁶ m ³)
Peace River Oil Sands Area					
Thermal commercial projects	63.7	40	25.5	11.5	14.0
Primary recovery schemes	160.8	10	16.1	14.8	1.3
Subtotal°	224.5		41.6	26.3	15.3
Athabasca Oil Sands Area					
Thermal commercial projects	391.8	50	195.9	116.5	79.3
Primary recovery schemes	1 026.2	5	51.3	24.1	27.2
Enhanced recovery schemes ^d	(289.0) ^e	10	28.9	22.3	6.6
Subtotal	1 418.0		276.1	162.9	113.4
Cold Lake Oil Sands Area					
Thermal commercial (CSS) ^f	1 212.8	25	303.2	241.2	62.0
Thermal commercial (SAGD) ⁹	33.8	50	16.9	3.5	13.4
Primary recovery schemes	6 257.5	5	312.9	98.0	214.9
Subtotal	7 504.1		633.0	342.7	290.3
Total ^c	9 146.6		950.7	531.9	418.6

Table R3.5 In situ crude bitumen reserves^a in areas under active development as of December 31, 2012

^a Thermal reserves are reported only for lands on which thermal recovery is approved and drilling development has occurred.

^b Includes amendments to production reports.

^c Any discrepancies are due to rounding.

^d Schemes currently on polymer injection or waterflooding in the Brintnell-Pelican area. Previous primary production is included under primary recovery schemes.

• The in-place number is that part of the initial volume in place for primary recovery schemes that will see incremental production due to polymer injection or waterflooding.

or waternooding.

^f Cyclic steam stimulation projects.

⁹ Steam-assisted gravity drainage projects.

expected to be recovered within the original boundaries of the SMA. The ultimate potential from within the area of expansion has yet to be estimated, leaving the total ultimate potential crude bitumen unchanged at 50 10⁹ m³.

3.2 Supply of and Demand for Crude Bitumen

This section includes crude bitumen production, upgrading, and disposition of both upgraded and nonupgraded bitumen. Nonupgraded bitumen refers to crude bitumen that is blended with a lighter-viscosity product (referred to as a diluent) in order to meet specifications for transport through pipelines. Upgraded bitumen refers to the portion of crude bitumen production that is upgraded to synthetic crude oil or other petroleum products. Most upgraded bitumen is used by refineries as feedstock.

Upgraders chemically alter the bitumen by adding hydrogen, subtracting carbon, or both. In upgrading, the sulphur contained in bitumen may be removed, either in elemental form or as a constituent of oil sands coke. The bitumen upgrading process produces off-gas that is high in natural gas liquids (NGLs) and olefins. The off-gas is used primarily as fuel in oil sands operations. There are increasing volumes of off-gas being processed to remove

the NGLs and olefins, which are used as feedstock in the petrochemical industry. Most oil sands coke recovered as a by-product of the upgrading process is stockpiled, and a small amount is burned to generate electricity. Elemental sulphur is either stockpiled or shipped to facilities that convert it to sulphuric acid, which is mainly used to manufacture fertilizers.

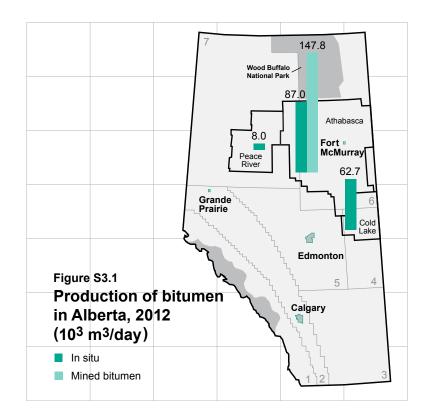
Condensates¹ and upgraded bitumen are two main types of diluent used to lower the viscosity of bitumen for transport in pipelines, although naphtha, light crude oil, and butanes can also be used to enable the bitumen to meet pipeline specifications. Heated and insulated pipelines can decrease the amount of diluent needed to move bitumen through them. Condensates are lighter than upgraded bitumen as a diluent, which means a smaller volume of condensates is required to move bitumen through a pipeline. On average, a blend of bitumen and condensates will contain 30 per cent condensates, whereas a blend using upgraded bitumen will contain up to 50 per cent upgraded bitumen to meet pipeline specifications.

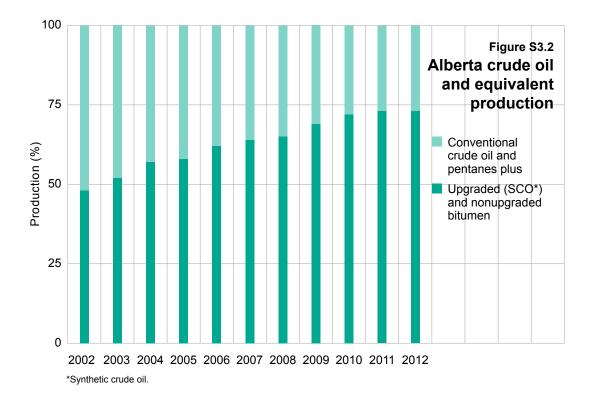
If condensates are used as a diluent to transport bitumen to destinations within Alberta, they are usually recycled. However, if they are used to transport bitumen to markets outside Alberta, they are generally not returned to the province. Instead, the condensates are used as part of the feedstock for upgraders and refineries downstream. In July 2010, Southern Lights pipeline began delivering additional imported diluent from the U.S. Petroleum Administration Defense District (PADD) 2 to Alberta. In 2012, Kinder Morgan announced plans to partially reverse the flow of the western portion of the Cochin pipeline system to deliver light condensate to Alberta.

The forecast of crude bitumen and upgraded bitumen production relies heavily on information provided by project proponents. This includes data on production capacity submitted during a project's application process, in addition to other publicly available materials, such as quarterly reports, presentations, and press releases, which provide information on schedules for bringing the resource on stream. A project's viability depends largely on the cost-price relationship between production, operating and transportation costs (supply), and the market price for bitumen and upgraded bitumen (demand). Other factors include the refining capacity to handle bitumen or upgraded bitumen and competition with other sources of supply in U.S. and Canadian markets. The forecasts for crude bitumen and upgraded bitumen include production from existing projects, expansions of existing projects, and new projects that have been granted approval. Demand for upgraded bitumen and nonupgraded bitumen in Alberta is based on refinery demand and transportation needs. Alberta upgraded and nonupgraded bitumen supply in excess of Alberta demand is marketed outside the province.

Project sponsors' projections of existing and future bitumen production can change over time for various reasons. Large oil sands production projects are complex and capital intensive. They require long lead and construction times, making the projects vulnerable to material and labour cost increases throughout the planning, construction, and production phases.

¹ The term condensates, as used here, applies to Alberta production of condensates and pentanes plus in addition to imported volumes of condensate.


3.2.1 Crude Bitumen Production – 2012


Surface mining and in situ production for 2012 are shown graphically by oil sands area (OSA) in **Figure S3.1**. In 2012, Alberta produced 305.5 thousand (10^3) m³/d of crude bitumen from all three OSAs, compared with 277.2 10³ m³/d in 2011. Of this 28.3 10³ m³/d increase in production, 22.3 10³ m³/d was from in situ schemes and 6.0 10³ m³/d was from mining. Regionally, in situ production growth was strongest in Athabasca (28.5 per cent increase) followed by Peace River (23.1 per cent increase) then Cold Lake (2.5 per cent increase). Combined, production for all three in situ areas grew by 16.5 per cent, compared with 4.2 per cent growth for mined bitumen production.

Overall, the increase in crude bitumen production of 28.3 10³ m³/d represents an annual increase of 10.2 per cent, higher than the production increase of 8.2 per cent between 2010 and 2011. Production from in situ projects exceeded mined production for the first time in 2012, a trend that is expected to continue. In 2012, in situ production accounted for 52 per cent of total bitumen production, compared with 49 per cent in 2011. **Figure S3.2** shows combined upgraded bitumen and nonupgraded bitumen production as a percentage of Alberta's total crude oil and equivalent production. The combined volume of upgraded bitumen and nonupgraded bitumen has increased from 48 per cent of the province's total crude oil production in 2002 to 73 per cent in 2012.

3.2.1.1 Mined Crude Bitumen

Annual mined production growth was $6.0 \ 10^3 \ m^3/d$ in 2012 as daily volumes grew to 147.8 $10^3 \ m^3/d$, up from 141.8 $10^3 \ m^3/d$ in 2011. Production growth in 2012 at 4.2 per cent was very similar to growth in 2011 at 4.1 per

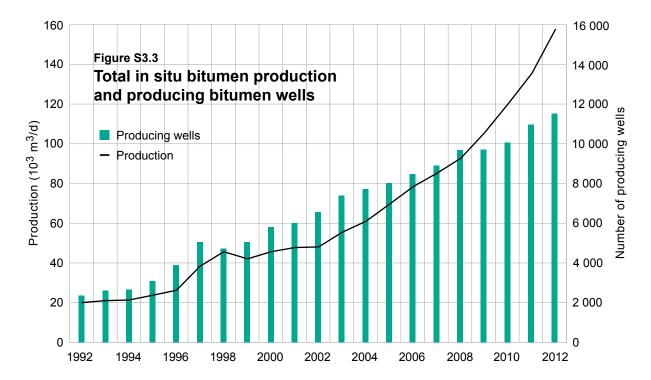
cent. Production gains at Shell and CNRL of 2.4 10³ m³/d and 8.8 10³ m³/d, respectively, were sufficient to offset Suncor and Syncrude production declines of 3.4 10³ m³/d and 1.8 10³ m³/d, respectively. At present, all mined bitumen in Alberta serves as feedstock for upgraders.

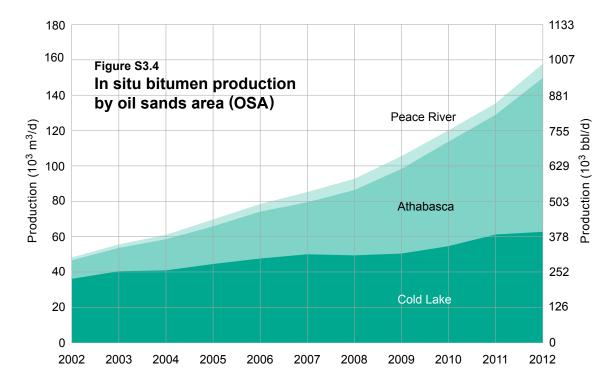
Syncrude (Mildred Lake and Aurora), Suncor, Shell (Muskeg River and Jackpine), and CNRL (Horizon) account for 36, 29, 24, and 11 per cent of total mined bitumen, respectively.

Syncrude's mined bitumen production in 2012 decreased by 3.3 per cent from 2011 levels. Production in 2012 averaged 53.3 10³ m³/d, a decrease of 1.8 10³ m³/d from 55.1 10³ m³/d in 2011. The decline was a result of decreased production at its Aurora mine, which saw production fall by 2.2 10³ m³/d. Production at its Mildred Lake mine increased by 0.4 10³ m³/d.

Mined bitumen production at Suncor decreased by 7.5 per cent in 2012. Production in 2012 averaged 42.3 10^3 m³/d, down from 45.8 10^3 m³/d in 2011.

Shell's Muskeg River and Jackpine mining projects produced 35.8 10³ m³/d in 2012, a 7.3 per cent increase over 2011 production of 33.4 10³ m³/d.

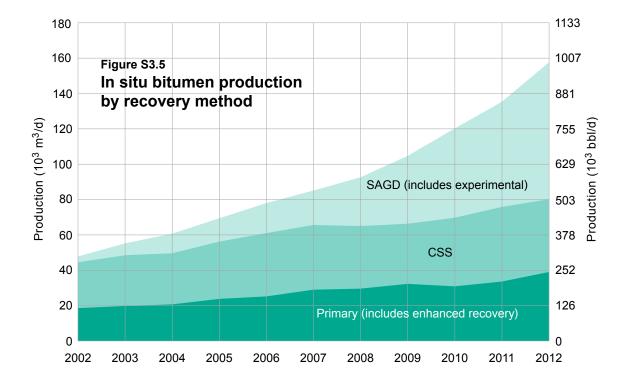

Following decreased production of 7.6 10^3 m³/d in 2011 due to a coker fire, CNRL's Horizon project produced 16.4 10^3 m³/d in 2012, an increase of 115.8 per cent.

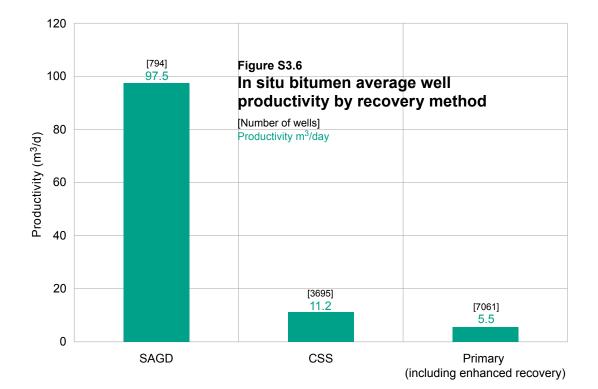

3.2.1.2 In Situ Crude Bitumen

In situ crude bitumen production for 2012 increased to $157.7 \ 10^3 \ m^3/d$ from $135.4 \ 10^3 \ m^3/d$ in 2011. This represents a 16.5 per cent increase, higher than the increase of 12.7 per cent from 2010 to 2011. Since 2002, in situ crude production has grown an average of 11.5 per cent per year.

Annual total in situ bitumen production, along with the number of bitumen wells on production for each year, is shown in **Figure S3.3**. The number of producing bitumen wells has increased along with in situ crude bitumen production from 2300 in 1992 to about 11 500 in 2012. The average annual productivity of in situ bitumen wells remained relatively flat between 1992 and 2004 at a level of 8.0 m³/d but began to climb in 2005 to average 8.7 m³/d, reaching 12.3 m³/d by 2011 and 13.7 m³/d in 2012. This change is due to the increase in steam-assisted gravity drainage (SAGD) wells, which have higher average productivity rates than cyclic steam stimulation (CSS) wells.

Figure S3.4 shows historical in situ production by OSA. For the third year, production from the Athabasca OSA was higher than that from the Cold Lake OSA, with the Athabasca and Cold Lake OSAs accounting for 55 per cent and 40 per cent of total in situ production, respectively. In 2012, the Athabasca, Cold Lake, and Peace River OSAs produced 87.0 10³ m³/d, 62.7 10³ m³/d, and 8.0 10³ m³/d, respectively. In 2012, annual production growth rates for the Athabasca, Cold Lake, and Peace River OSAs were 29 per cent, 3 per cent, and 23 per cent, respectively. Significant increases in production within the Athabasca OSA since 2002 are due to SAGD development, while increases in the Peace River OSA are largely the result of increased primary production of bitumen in the Seal area located southeast of Shell's Peace River thermal in situ bitumen production project.


Currently, there are three main methods for producing in situ bitumen: primary production, CSS, and SAGD. In situ bitumen production by recovery method per year is shown in **Figure S3.5**. Primary production includes those schemes that use water and polymer injection (considered as enhanced recovery) as a recovery method. In 2012, 26 per cent of in situ production was recovered by CSS, 49 per cent by SAGD, and 25 per cent by primary schemes. SAGD production was responsible for 80 per cent of the total increase in production between 2011 and 2012. CSS experienced a slight decline, falling by 1.0 10³ m³/d, a 2 per cent decrease over 2011 production levels.


SAGD technology has been in use since 2001 and is the preferred method of recovery for most new projects in the Athabasca OSA. As discussed earlier, the total productivity of in situ wells has been increasing, largely due to an increase in the use of SAGD as a method of recovery. **Figure S3.6** shows the average well productivity in 2012 by recovery method for SAGD, CSS, and primary (including enhanced recovery). This is calculated by dividing the average daily production on a monthly basis by the average producing well count for the respective month, which is then adjusted to produce an annual average.

3.2.1.3 Upgraded Bitumen

Currently, all Alberta mined bitumen and a portion of in situ production (7 per cent) are upgraded. Upgraded bitumen production in 2012 was 142.9 10³ m³/d, compared with 137.1 10³ m³/d in 2011. **Table S3.1** shows upgraded bitumen production in 2012 by individual operator.

Alberta's five upgraders produce a variety of upgraded products: Suncor produces light sweet and medium sour crudes, including diesel; Syncrude, CNRL Horizon, and Nexen Inc. (Nexen) Long Lake produce light sweet synthetic crude; and Shell produces an intermediate refinery feedstock for the Shell Scotford refinery, as well as

Company/project name	Production (10 ³ m ³ /d)
Syncrude	46.2
Suncor	44.8
Shell Canada Scotford	33.8
CNRL Horizon	13.4
Nexen Long Lake	4.7
Total	142.9

Table S3.1 Upgraded bitumen production in 2012^a

^a Any discrepancies are due to rounding.

sweet and heavy synthetic crude oil. Production from new upgraders is expected to align in response to specific refinery product requirements.

Most of the projects use delayed coking as their primary upgrading technology and achieve volumetric liquid yields (upgraded bitumen produced/bitumen processed) of 80 to 90 per cent, whereas projects employing hydrogen-addition can achieve volumetric liquid yields of 100 per cent or more. The Nexen Long Lake project uses OrCrudeTM, a carbon rejection upgrading process using conventional thermal cracking, distillation, and solvent deasphalting equipment. A key aspect of this process is the removal of coke precursors (asphaltenes) prior to thermal cracking of the upgrader feed.

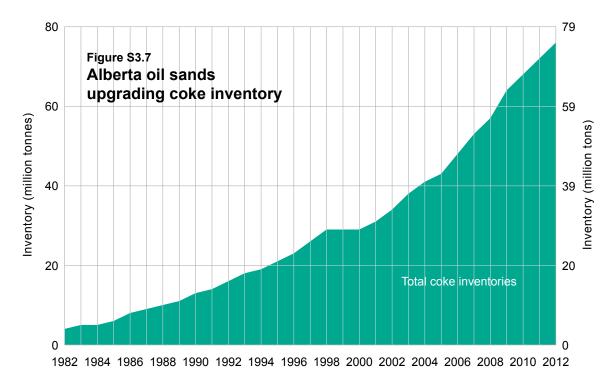
3.2.1.4 Gasification

Gasification allows companies to convert materials that would otherwise be low-value products into energy sources and reduces the reliance on external energy sources. Gasification can be used to convert asphaltenes, petroleum coke, and vacuum distillation bottoms into a synthetic gas (syn gas) fuel.

The Nexen Long Lake project integrates the gasification of asphaltenes to produce a syn gas that is used in the SAGD and upgrading operations, significantly reducing the amount of natural gas that is required.

Gasification of low-value products is also being planned for the proposed North West Upgrader. The gasifier will produce syn gas and hydrogen from refinery bottoms.

3.2.1.5 Petroleum Coke


Petroleum coke is a by-product of the oil sands upgrading process that is currently being stockpiled in Alberta and is considered a potential source of energy. It is high in sulphur but has a lower ash content than conventional fuel coke.

Suncor and Syncrude operate Alberta's two largest oil sands mines near Fort McMurray. Built with the capacity for both on-site extraction and upgrading, Syncrude and Suncor both produce coke. The CNRL Horizon project, which started operations in 2009, has an oil sands mine and on-site extraction facilities. It also has upgrading capabilities using delayed coking technology that produces coke.

Suncor has been burning sulphur-rich coke in its boilers for decades at its mine near Fort McMurray and is responsible for most of the total coke used as site fuel. In 2012, Suncor used approximately 16 per cent of its annual coke production as site fuel and sold approximately 23 per cent through its Energy Marketing Group. Syncrude began using coke as a site fuel in 1995 and by 2012 used 21 per cent of its annual coke production as site fuel. At CNRL's Horizon project, all coke produced is stockpiled, accounting for approximately 4 per cent of total coke inventories.

Suncor and Syncrude are exploring new ways to use their coke surplus, including using it as a reclamation material. In August 2009, Suncor applied to the ERCB for permission to use coke inventories for capping two tailings ponds. Suncor estimated that it could use about 40 million tonnes of the coke stockpiled for non-energy use for reclamation. In July 2011, Suncor received partial approval to begin a full-scale operational test on one of the ponds.

Statistics of coke inventories reported in *ST39: Alberta Mineable Oil Sands Plant Statistics* show general increases in the total closing inventories per year, as illustrated in **Figure S3.7**. In 2012, coke inventories reached 76 million tonnes, up 4 million tonnes from 2011. This represents a change of approximately 6 per cent, which is consistent with the 2011 rate of growth. Coke inventories are expected to continue their growth with the recent addition of CNRL's Horizon project, unless significant alternative uses are found. Inventories remained constant from 1998 to 2000 due to higher on-site use of coke by the upgraders.

3.2.2 Crude Bitumen Production – Forecast

3.2.2.1 Mined Crude Bitumen

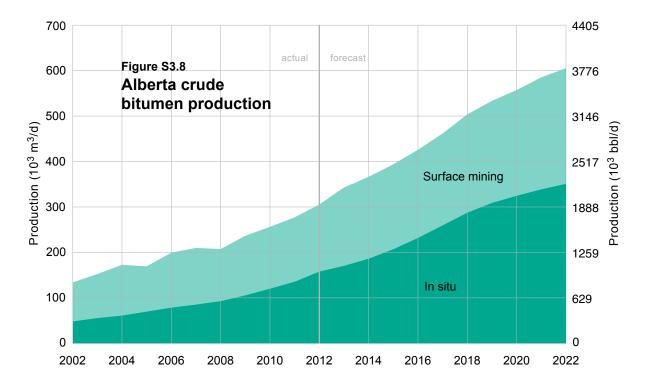
In projecting the future supply of bitumen from mining, the ERCB considered potential production from existing facilities and supply from future projects. Production from future mining projects considers the high cost of engineering and materials and the substantial amount of skilled labour required for expansions to existing and new projects. The ERCB also recognizes that other key factors, such as the forecast of oil prices and the length of the construction period, will affect project timing. Projects that have been approved are considered for inclusion in our forecast. Announced projects are generally not included in our forecasts. The projects actually considered for the forecast are shown in **Table S3.2**.

Company Project	Start-up	Capacity (10³ m³/d)	Status
Alberta Oil Sands Project (Shell)			
Muskeg River expansion and debottlenecking	TBD*	18.3	Approved
Jackpine Phase 1B	TBD	15.9	Approved
Jackpine Phase 2	TBD	15.9	Application
Pierre River Phase 1	TBD	15.9	Application
Pierre River Phase 2	TBD	15.9	Application
CNRL			
Horizon Phase 2/3	TBD	21.5	Approved
Suncor/Total E&P Canada			
Fort Hills Phase 1	TBD	26.2	Approved
Fort Hills debottleneck	TBD	4.0	Approved
Imperial Oil/Exxon Mobil			
Kearl Phase 1	2013	17.5	Under construction
Kearl Phase 2	TBD	17.5	Approved
Kearl Phase 1 debottleneck 1	TBD	4.5	Approved
Kearl Phase 1 debottleneck 2		5.0	Approved
Kearl Phase 2 debottleneck 1		4.5	Approved
Kearl Phase 2 debottleneck 2		5.0	Approved
Total E&P Canada/Suncor			Approved
Joslyn (North)	TBD	15.9	Approved
Teck Resources Limited			
Frontier Phase 1	TBD	11.9	Application
Frontier Phase 2	TBD	13.3	Application
Frontier Phase 3	TBD	12.6	Application
Frontier Phase 4	TBD	6.3	Application

Table S3.2 Surface mined bitumen projects

Source: ERCB and company releases.

* To be determined.


Projects awaiting regulatory or corporate approval are generally discounted at 50 per cent, while those under construction or soon to be operating are discounted at rates reflective of past production. Due to uncertainties regarding timing and project scope, some projects, including Teck's Equinox project, have not been considered in the ten-year forecast. If production were to come on stream from these proposed projects, it would be in the latter part of the forecast period.

In projecting total mined bitumen over the forecast period, the ERCB considered factors such as the crude oil price environment, the availability of export capacity, and the availability of refinery capacity.

By 2022, mined bitumen is expected to reach 254.6 10^3 m³/d. This is slightly lower compared with the end of the forecast period in last year's report. Mined bitumen production compared to total bitumen production over the forecast period is illustrated in **Figure S3.8**, which shows that the percentage of mined bitumen to total production is expected to decrease from 48 per cent in 2012 to 42 per cent in 2022.

3.2.2.2 In Situ Bitumen

Similar to surface mining, the forecasted supply of in situ bitumen includes production from existing projects, expansions to existing projects, and development of new projects. In forecasting production from existing and future schemes, the ERCB considered all approved projects and projects currently before the ERCB for approval. The forecast assumes that existing projects will continue producing at their current or projected production levels over the forecast period. To this projection, the ERCB has added crude bitumen production from new and expanded schemes. The production forecasts for future crude bitumen projects take into account past experiences of similar schemes, project modifications, crude oil and natural gas prices, light crude and bitumen price differentials, pipeline availability, and the ability of North American markets to absorb the increased volumes.

The current forecast has increased over last year's primarily due to the addition of new proposed projects and the accelerated development schedules for existing and approved projects. Factors that may affect the pace of development were considered in the forecast, such as the availability of labour and equipment. As illustrated in **Figure S3.8**, the ERCB expects in situ crude bitumen production to increase to 350.8 10³ m³/d by 2022. This represents an increase of 8 per cent when compared to the end of the forecast period in last year's report. Based on this projection, in situ bitumen will account for 58 per cent of total bitumen produced by 2022.

Projects that have been approved are considered for inclusion in this forecast. Announced projects are generally not included in the forecast. Projects awaiting regulatory or corporate approval are generally discounted at 50 per cent, while those under construction or soon to be operating are discounted at rates reflective of past production. The projects considered for the forecast are shown in **Table S3.3**.

In 2012, approximately 7 per cent of in situ production in Alberta was upgraded. The percentage of in situ bitumen upgraded is expected to vary throughout the forecast period, before reaching about 9 per cent in 2022, which is lower than the projection in the 2011 forecast as a result of a reduction in the ERCB's forecast for upgrading.

3.2.2.3 Upgraded Bitumen

To forecast upgraded bitumen production, the ERCB includes existing production from the Suncor, Syncrude, Shell, CNRL, and Nexen projects plus their planned expansions, as well as the new production expected from projects listed in **Table S3.4** on page 3-24. Production from future upgrading projects considers the high cost of engineering and materials and the substantial amount of skilled labour required for expansions to existing and new projects. The ERCB also recognizes that other key factors, such as oil price forecasts, the price differential between light crude oil and bitumen, the length of the construction period, and the market penetration of new upgraded volumes, will affect project timing.

Companies have begun to express interest in partial upgrading. Partial upgrading involves the removal of asphaltenes, along with other heavier organic compounds, to lower the viscosity of the crude bitumen sufficiently for it to flow in pipelines without the need for diluent. Partial upgrading offers significant cost savings over the building of a full upgrader and produces a crude oil consistent with traditional heavy oils. Current partial upgrading proposals include Value Creation's Terre de Grace and Advanced TriStar projects and MEG's HI-Q demonstration pilot project.

Over the forecast period, the percentage of crude bitumen upgraded is expected to decline from 52 per cent of total crude bitumen in 2012 to 38 per cent in 2022. This is a result of the in situ production growth outpacing the growth in upgrading capacity.

Figure S3.9 on page 3-24 shows the ERCB's projection of upgraded bitumen production, which is expected to increase from 142.9 10^3 m³/d in 2012 to 153.6 10^3 m³/d in 2013. This increase assumes operators are able to reach their planned production targets. Production is forecast to increase to 200.8 10^3 m³/d by 2022. This represents a decrease of 10 per cent over last year's end of forecast projection of 223.5 10^3 m³/d by 2021. This decrease is due to the cancellation of the Voyageur upgrader.

Company Project	Start-up	Capacity (10³ m³/d)	Status
Athabasca Region			
Alberta Oil Sands			
Clearwater West	TBD*	1.6	Application
Athabasca Oil			
Dover Clastics	TBD	1.9	Application
Hangingstone	TBD	1.9	Approved
BlackPearl			
Blackrod Commercial Phase 1–3	TBD	12.8	Application
Cavalier			
Hoole Grand Rapids	TBD	1.6	Application
Cenovus			
Christina Lake Phase E	2013	6.4	Under construction
Christina Lake Phase F	2016	7.9	Under construction
Christina Lake Phase G	TBD	7.9	Approved
Foster Creek Phase F	2014	5.6	Under construction
Foster Creek Phase G	2015	5.6	Under construction
Foster Creek Phase H	TBD	5.6	Approved
Narrows Lake Phase 1A–1B	TBD	10.3	Approved
Pelican Lake Grand Rapids Phases A–C	TBD	9.5	Application
Telephone Lake Phases A–B	TBD	7.2	Application
CNRL			
Grouse Stage 1	TBD	7.9	Application
Kirby South Phase 1	2014	7.2	Under construction
Kirby North and South Phase 2	TBD	15.2	Application
Connacher			
Great Divide Expansion Phases 1–3	TBD	3.8	Application
ConocoPhillips			
Surmont Phase 2	2014	17.3	Under construction
Devon			
Jackfish 3	2014	5.6	Under construction
Pike 1 Phases A–C	TBD	16.8	Application
Walleye	TBD	1.4	Application
Dover Op. Co.			
Dover Phases 1–5	TBD	40.0	Application
MacKay River Phase 1	2014	5.6	Under construction
MacKay River Phases 2–4	TBD	18.4	Approved

 Table S3.3
 In situ crude bitumen projects

(continued on next page)

Table S3.3 (continued)

Company Project	Start-up	Capacity (10³ m³/d)	Status
Grizzly Oil Sands			
Algar Phases 1–2	TBD	0.9	Approved
May River Phase 1	TBD	1.6	Approved
Harvest			
BlackGold Phase 1	2014	1.6	Under constructior
BlackGold Phase 2	TBD	3.2	Application
Husky			
Sunrise Phase 1	2014	9.5	Under constructior
Sunrise Phases 2–4	TBD	22.2	Approved
Ivanhoe			
Tamarack Phases 1–2	TBD	3.2	Application
JACOS			
Hangingstone Expansion	TBD	5.6	Approved
Koch Exploration			
Muskwa	TBD	1.6	Application
Laricina			
Germain Phases 2–4	TBD	23.8	Application
Saleski Phase 1	TBD	2.0	Application
Marathon			
Birchwood	TBD	1.9	Application
MEG			
Christina Lake Phase 3A–3C	TBD	23.7	Approved
Surmont Phases 1-3	TBD	19.5	Application
Nexen			
Kinosis Phase 1A	2014	3.2	Approved
Kinosis Phases 1-2	TBD	19.0	Approved
Statoil			
Kai Kos Dehseh Leismer Commercial	TBD	1.6	Approved
Kai Kos Dehseh Leismer Expansion	TBD	3.2	Approved
Kai Kos Dehseh Corner	TBD	6.4	Approved
Suncor			
Firebag Phases 5–6	TBD	19.8	Approved
MacKay Phase 2	TBD	6.4	Approved
Sunshine Oilsands			
Legend Lake	TBD	1.6	Application
Thickwood	TBD	1.6	Application
West Ells Phases 1–2	TBD	1.6	Approved

(continued on next page)

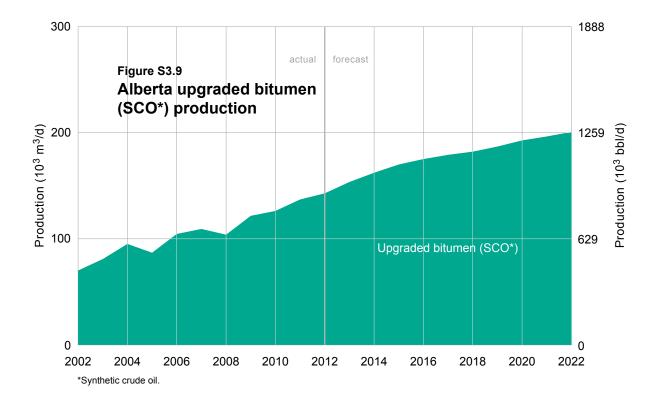
Table S3.3 (continued)

Company Project	Start-up	Capacity (10 ³ m ³ /d)	Status
Surmont Energy			
Wildwood	TBD	1.9	Application
Value Creation			
Terre de Grace Phase 1	TBD	1.6	Approved
Advanced TriStar	TBD	11.9	Application
Cold Lake Region			
Husky			
Caribou Lake Phase 1	TBD	1.6	Approved
Imperial			
Cold Lake Phases 14–16	TBD	4.8	Approved
Koch Exploration			
Gemini Phase 2 (incl. pilot)	TBD	1.8	Application
Osum			
Taiga Phase 1–2	TBD	7.2	Application
Pengrowth			
Lindbergh	TBD	2.0	Application
Shell			
Orion (Hilda Lake) Phase 2	TBD	1.6	Approved
Peace River Region			
Penn West			
Seal Main Commercial	TBD	1.6	Application
Shell Peace River			
Carmon Creek Phases 1–2	TBD	10.6	Application

Source: ERCB and company releases.

* To be determined.

3.2.3 Supply Costs


The supply cost for a resource or project can be defined as the minimum constant dollar price required to recover all capital expenditures, operating costs, royalties, and taxes, as well as earn a specified return on investment. This price can then be compared with current market prices to assess whether a project or resource is economically attractive. It can also be used for comparative project economics.

The supply cost calculation determines a value received per unit of production. For SAGD and standalone mining, this entails solving for a bitumen price at plant gate. In order to provide a more meaningful comparison, the results of the supply cost analysis have been converted to a West Texas Intermediate (WTI) price, which is directly comparable to current market prices.

Table S3.4 Upgraded bitumen projects

Company		Upgrading capacity	
Project	Start-up	(10 ³ m ³ /d)	Status
Athabasca Region			
CNRL			
Horizon Phase 2A	2014	1.6	Approved
Horizon Phase 2B/3	TBD	19.9	Approved
Nexen/OPTI			
Long Lake Phase 2	TBD	9.3	Approved
Value Creation			
Terre de Grace Pilot	TBD	1.3	Application
Advanced TriStar	TBD	10.2	Application
Industrial Heartland Region			
Shell			
Upgrader 2 Phases 1–4	TBD	47.7	Withdrawn
North West Upgrading			
NW Upgrader Phase 1	2016	7.4	Approved
NW Upgrader Phase 2–3	TBD	14.8	Approved

Source: ERCB and company releases.

3.2.3.1 Assumptions

Although each project is unique in its location and the quality of its reserves, the supply cost analysis relies on more generic project specifications and capital and operating cost estimates. Data selected for the analysis are provided in **Table S3.5** in both metric and imperial units since North American price data are based on a US\$ WTI. The input cost data, and the resultant supply cost outputs, are in 2012 dollars.

	Produ	ction	Capital cost		Estimated supply cost	Purchased gas requir	
Project type	(10³ m³/d)	(bbl/d)	range (millions of dollars)	Capacity Utilization	(\$US WTI equivalent per barrel)	(10³ m³ gas/ m³ oil)	(mcf/bbl)
In situ SAGD	4.8	30 000	750–1 500	90%	50–80	0.177–0.354	1.0–2.0
Standalone mine	15.9	100 000	5 500–7 500	90%	70–85	0.071-0.106	0.4–0.6

Table S3.5Supply cost project data, 2012

The generic projects represent proposed project types, including in situ SAGD (with and without cogeneration) and standalone mining with cogeneration. An integrated mine was not considered for this analysis as there are currently no proposed integrated bitumen projects in Alberta. Although significant production currently comes from CSS projects, few new CSS projects have been proposed, and therefore supply costs have not been determined for this recovery method. The wide range in SAGD capital costs represents the current economic environment in which producers are pursuing additional phases, as well as green field development, with the lower range of the capital cost being applicable to phased additions where portions of the infrastructure are already in place.

A major component of operating costs is purchased natural gas for fuel and feedstock. This analysis assumes an average value of Cdn\$4.75 per gigajoule real Alberta reference price over a project's 30- to 40-year life. For 2012 and beyond, the analysis assumes a nominal discount rate of 10 per cent, whereas the 10 per cent discount rate used in the past had been real.

3.2.3.2 Results

The supply cost calculation for 2012 has changed significantly from previous years. Among the changes were the addition of a capacity utilization factor, a change in the discount rate used, and for SAGD the gas use rate for the high case was increased from $0.265 \ 10^3 \ m^3/m^3$ to $0.354 \ 10^3 \ m^3/m^3$. As a result, the 2012 results are not comparable to those calculated last year. As illustrated in **Table S3.5**, even with the inclusion of a capacity utilization factor and a wider price differential, the ongoing development of many in situ and mining projects is still supported. However, some higher cost projects may be delayed or cancelled.

A major risk to the capital cost assumptions in this analysis would be the re-emergence of cost escalation that occurred in the last decade. When too many projects proceed, resources such as labour quickly become scarce, which results in an escalation in capital and supply costs.

3.2.4 Pipelines

Currently, pipeline capacity leaving Alberta has become tight, making it increasingly sensitive to service disruptions and increased shipments. As a consequence, Enbridge's Mainline and Lakehead pipeline systems experienced apportionment in the fourth quarter of 2012 and the first quarter of 2013.² Additional capacity leaving Alberta, as well as new pipelines further downstream, are expected to add incremental capacity in the short to medium term. However, capacity is expected to remain tight for 2013.

The inability to access additional markets, limited takeaway capacity, and oversupply at Cushing, Oklahoma, continue to affect the ability of Enbridge to take advantage of unused capacity on the Mainline system prior to Superior, Wisconsin. This is expected to change as pipelines aimed at accessing additional markets and expanding capacity are pursued.

The reversal of Enbridge's line 9A, aimed at providing eastbound capacity between Sarnia, Ontario, and Westover, Ontario, is expected to be complete in 2013. In addition, Enbridge has announced plans to pursue the reversal of line 9B between Westover and Montreal, Quebec, providing 38.2 10³ m³/d of capacity between Sarnia and Montreal by 2014, pending National Energy Board (NEB) approval. The reversal of lines 9A and 9B will provide producers with access to additional refining capacity in Westover and Montreal. Additionally, expansion to Enbridge's line 62 (Spearhead North) running between Flanagan, Illinois and Chicago, Illinois, is expected to be complete by 2014, providing the ability to move an additional 47.7 10³ m³/d of heavy crude into the Chicago area and points east. In addition to Enbridge's plans, TransCanada is currently gauging interest in the conversion of part of its mainline system from gas transmission to oil, and expects to be in a position in 2013 to make a decision. The converted pipeline, referred to as the Mainline Conversion project, could carry between 79.5 10³ m³/d and 159.0 10³ m³/d and would initially move oil from Alberta to Montreal.

Projects aimed at providing takeaway capacity from Cushing continue to move forward. In 2012, the Seaway pipeline, which runs from Cushing to the Gulf Coast, was successfully reversed and shipped its first volumes. In early 2013, the pipeline's expansion to 63.6 10³ m³/d was completed and Enbridge has announced plans to twin the pipeline, which would add an additional 71.5 10³ m³/d of capacity in 2014. Following the denial of a U.S. regulatory permit for its Keystone XL pipeline in early 2012, TransCanada announced plans to go ahead with the southern leg of the Keystone project. The southern leg (the Gulf Coast Project), with a planned in-service date of late 2013, includes the development of a 131.9 10³ m³/d pipeline between Cushing and Nederland, Texas. Further, Enbridge has entered into an agreement with Energy Transfer Partners to jointly develop a project to provide crude oil pipeline access to the eastern Gulf Coast refinery market from the hub at Patoka, Illinois. Dubbed the Eastern Gulf Access project, it would entail converting a natural gas pipeline to crude service, with an initial capacity of 39.7 10³ m³/d.

In response to announced and actual additions of takeaway capacity at Superior and Cushing, Enbridge has announced its intention to further expand its Mainline and Lakehead systems. This will include expansions of

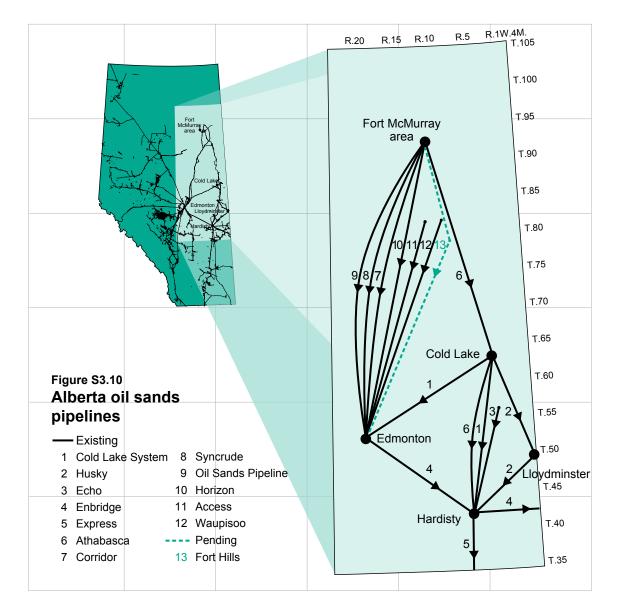
² When shippers nominate more oil or oil products in a given month than the pipeline can transport, shipper volumes are apportioned (reduced) based on the tariff in effect. Apportionment can be caused by factors such as growing supply, increased demand, pipeline reconfigurations, reduced pipeline capacity or refinery maintenance.

the Alberta Clipper line and the Southern Access line, with a targeted in-service date of mid-2014. The Alberta Clipper line is being expanded by 19.1 10³ m³/d, increasing capacity from 71.5 10³ m³/d to 90.6 10³ m³/d. The Southern Access line is being expanded by 25.4 10³ m³/d, increasing capacity from 63.6 10³ m³/d to 89.0 10³ m³/d. Supporting the expansion of the Southern Access pipeline is the proposed Flanagan South project, which would mirror the Spearhead pipeline. Flanagan South is being proposed with an initial design capacity of 93.0 10³ m³/d that is expandable to 127.1 10³ m³/d. Pending regulatory approval, Enbridge plans to have the Flanagan South pipeline in service by mid-2014.

Among the factors affecting the availability of pipeline capacity for Alberta crude oil production is competition from U.S. Bakken light oil production from the Williston Basin, centred in northwestern North Dakota. This competition for capacity is expected to increase due to production growth in the Bakken (and equivalents) light oil of both the Williston and Alberta basins. In May 2011, Enbridge completed the Portal link, which has the capacity to deliver 4.0 10³ m³/d of U.S. Bakken production into Enbridge's Steelman Terminal in Saskatchewan. Currently, Enbridge is proposing the Bakken pipeline project that would see the Portal Link expanded to 23.0 10³ m³/d by 2013. In addition to the proposed Bakken pipeline project, Plains All American Pipeline has plans to reverse its Wascana pipeline, which would see U.S. Bakken production flow into Enbridge's system in Regina, Saskatchewan. More recently, Enbridge has been talking with producers about development of the Sandpiper pipeline, which would take light oil production from the Bakken to the mainline at Superior. The Sandpiper is targeted to be in service between 2014 and 2016, with an initial capacity of 35.8 10³ m³/d. In addition, Enbridge has announced an extension to its Southern Access pipeline from Flanagan to Patoka. The extension will transport light crude, have an initial capacity of 47.7 10³ m³/d, and be in service between 2014 and 2016.

At present, rail plays a significant role in moving crude oil to market, transporting in 2012 over 14.3 10^3 m³/d of crude oil. With continued growth in production and new terminals in planning or under construction, rail movements are expected to continue growing into the foreseeable future.

Future possible pipeline capacity additions include the Keystone XL pipeline, the Northern Gateway pipeline, and an expansion to the Trans Mountain pipeline. The northern leg of the Keystone XL pipeline would run from Hardisty, Alberta, to Steele City, Nebraska, and have an initial capacity of 131.9 10³ m³/d. Pending approval, TransCanada intends to have the pipeline in service by 2015. The review process for Enbridge's Northern Gateway project is currently ongoing, with a decision expected in mid-2014. The proposed pipeline would run from Bruderheim, Alberta, to Kitimat, British Columbia, with an initial capacity of 83.4 10³ m³/d. In addition, Kinder Morgan has been gauging interest in expanding its Trans Mountain pipeline, which continues to experience apportionment. The Trans Mountain pipeline moves crude oil from Edmonton, Alberta, to marketing terminals and refineries in the central British Columbia region, the Greater Vancouver area, and international destinations, including the western United States. In 2013, Kinder Morgan announced that it would proceed with plans to increase capacity from 47.7 10³ m³/d to 141.4.1 10³ m³/d by 2017. Kinder Morgan intends to submit an application to the NEB for the proposed expansion project late in 2013. Further information regarding the proposed removal pipelines can be found below under **Section 3.2.4.4**.


Within Alberta, the current pipeline system's ability to expand, in addition to proposed projects, should provide adequate transportation capacity for the expected increases in upgraded and nonupgraded bitumen production over the forecast period. The current pipeline systems in the Cold Lake and Athabasca areas are described in **Table S3.6**. **Figure S3.10** shows the current pipelines and proposed crude oil pipeline projects within the Athabasca and Cold Lake areas. Numerals within parentheses in the following sections on existing and proposed pipelines in Alberta refer to the legend on this map.

Destination	Current capacity (10 ³ m ³ /d)
Hardisty	103.3
Edmonton	
Hardisty	78.0
Lloydminster	
Hardisty	12.0
Hardisty	62.0
Edmonton	73.9
Edmonton	61.8
Edmonton	23.0
Edmonton	23.8
Edmonton	55.6
Edmonton	39.7
	Hardisty Edmonton Hardisty Lloydminster Hardisty Edmonton Edmonton Edmonton Edmonton Edmonton

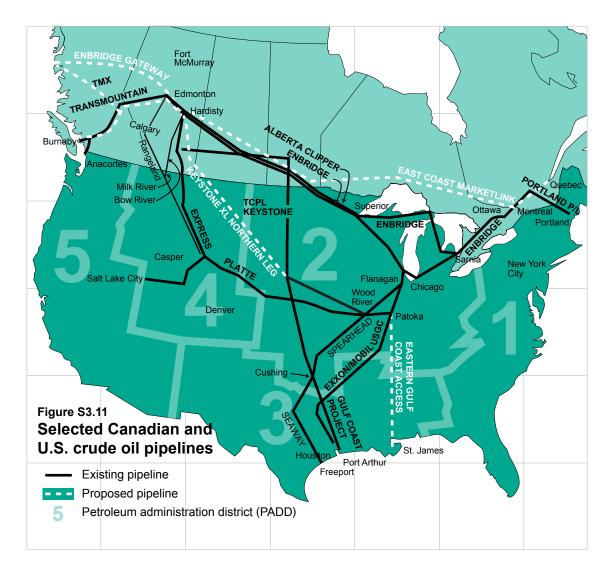
Table S3.6 Alberta upgraded and nonupgraded bitumen pipelines

3.2.4.1 Existing Alberta Pipelines

- The Cold Lake pipeline system (1) is capable of delivering heavy crude from the Cold Lake area to Hardisty and Edmonton.
- The Husky pipeline (2) moves Cold Lake crude oil to Husky's heavy oil operations in Lloydminster. Heavy crude oil and upgraded bitumen are then transported to Husky's terminal facilities at Hardisty, where oil is delivered into the Enbridge (4) or the Kinder Morgan Express (5) pipeline systems.
- The Echo pipeline (3) is an insulated pipeline able to handle high-temperature crude, thereby eliminating the requirement for diluent blending. This pipeline delivers Cold Lake crude to Hardisty.
- The Enbridge pipeline (4) is an existing export pipeline.
- The Kinder Morgan Express pipeline (5) is an existing export pipeline.
- The Athabasca pipeline (6) delivers upgraded product and bitumen blends to Hardisty. Its current capacity is 62 10³ m³/d but it has the potential to carry 90.6 10³ m³/d.

- The Inter Pipeline Fund Corridor pipeline (7) transports diluted bitumen from the Albian Sands mining project to the Shell Scotford Upgrader near Edmonton.
- The Syncrude pipeline (formerly Alberta Oil Sands pipeline) (8) is the exclusive transporter for Syncrude. It runs from the Syncrude mine site north of Fort McMurray to the Edmonton area.
- The Oil Sands pipeline (9) transports Suncor upgraded bitumen to the Edmonton area.
- Pembina Pipeline's Horizon pipeline (10) is the exclusive transporter for CNRL's Horizon oil sands development. With an initial capacity of 39.7 10³ m³/d, it transports upgraded bitumen to the Edmonton area.
- The Access pipeline (11) transports diluted bitumen from the Christina Lake area to facilities in the Edmonton area. The capacity of the pipeline is 23.8 10³ m³/d, expandable to 63.9 10³ m³/d.

- The Enbridge Waupisoo pipeline (12) moves blended bitumen from the Cheecham Terminal, south of Fort McMurray, to the Edmonton area. The Waupisoo Pipeline has a current capacity of 55.6 10³ m³/d and is expandable to 95.3 10³ m³/d.
- The Rainbow pipeline system (not shown on **Figure S3.10**), owned by Plains Midstream and with a capacity of 31.7 10³ m³/d, transports Peace River oil sands crude oil and condensate from Rainbow Lake to Edmonton.


3.2.4.2 Proposed Alberta Pipeline Projects

- Access Pipeline intends to twin its existing pipeline (11), with the new pipeline being capable of transporting 55.6 10³ m³/d. The line is scheduled to be in service by 2015.
- Enbridge is proposing to expand its existing Waupisoo (12) line from the Cheecham Terminal to the Edmonton Terminal. This expansion would increase the line's capacity for transporting oil sands derived crude oil from 38.1 10³ m³/d to 87.4 10³ m³/d by 2013.
- Enbridge also intends to expand its capacity to move bitumen from the Christina Lake region by expanding the capacity of its Athabasca system (6), which moves product to the Hardisty Terminal.
- Enbridge has announced that the Fort Hills pipeline system (13) has been commercially secured and is currently pending based on customer timing.
- Inter Pipeline has announced that it intends to proceed with an integrated expansion of its Cold Lake (1) and Polaris (7) pipeline systems.
- Plains Midstream has announced that it intends to build a new pipeline, called the Rainbow Pipeline II. The line will mirror the existing line for much of the route and will connect the Enbridge Terminal, near Edmonton, to the existing Plains Nipisi Terminal.

3.2.4.3 Existing Removal Pipelines

 Table S3.7 lists the existing removal pipelines with their corresponding destinations and capacities, and
 Figure S3.11 shows the existing removal pipelines leaving Alberta.

- The Enbridge pipeline, the world's longest crude oil and products pipeline system, delivers western Canadian crude oil to eastern Canada and the U.S. Midwest.
- The Kinder Morgan Express pipeline begins at Hardisty and moves south to Casper, Wyoming, where it connects to the Platte pipeline, which extends east into Wood River, Illinois.
- The Kinder Morgan Trans Mountain pipeline system transports crude oil and refined products from Edmonton to marketing terminals and refineries in the Greater Vancouver area and Puget Sound in Washington State. Trans Mountain's current capacity is 47.7 10³ m³/d, assuming that heavy oil represents some 20 per cent (historical average) of the total throughput.

- The Rangeland pipeline is a gathering system that serves as another export route for Cold Lake blended bitumen to Montana refineries.
- The Milk River pipeline delivers Bow River heavy crude oil to Montana refineries.
- TransCanada's Keystone pipeline, which commenced commercial operations in June 2011, ships crude oil to markets in the U.S. Midwest.
- Enbridge's Alberta Clipper pipeline, which was also completed in 2011, ships crude oil from Hardisty, Alberta, to Superior, Wisconsin.

3.2.4.4 Proposed Removal Pipeline Projects

Table S3.8 provides a summary of the pipeline expansions and new pipeline projects that are proposed to moveupgraded and nonupgraded bitumen to existing and new markets. Figure S3.11 shows the proposed removalpipeline expansions and new pipeline removal projects.

Table S3.7 Removal pipelines

Name	Destination	Capacity (10³ m³/d)
Enbridge Inc.		
Enbridge Pipeline	Eastern Canada U.S. East Coast U.S. Midwest	301.9
Alberta Clipper Pipeline	U.S. Midwest	71.5
Kinder Morgan Canada		
Express Pipeline	U.S. Rocky Mountains U.S. Midwest	44.9
Trans Mountain Pipeline	British Columbia U.S. West Coast Offshore	47.7
Plains Midstream Canada		
Milk River Pipeline	U.S. Rocky Mountains	18.8
Pacific Energy Partners, L.P.		
Rangeland Pipeline	U.S. Rocky Mountains	13.5
TransCanada Corporation		
Keystone Pipeline	U.S. Midwest	93.8

Table S3.8 Proposed removal pipeline projects

		Incremental capacity	_
Name	Destination	(10 ³ m³/d)	Start-up date
Enbridge			
Gateway Pipeline	U.S. West Coast	83.3	2017
	Offshore		
Kinder Morgan			
Trans Mountain Expansion	British Columbia	87.4	TBD
	U.S. West Coast		
	Offshore		
TransCanada Pipeline			
Keystone XL Pipeline	U.S. Gulf Coast	111.3	2015

3.2.4.5 Rail Transportation

Rail shipments, while growing, still represent a small portion of total volumes of crude bitumen moved from Alberta. Increasingly rail is being considered as producers seek to ensure that transportation is available for their production. Currently rail is being used to service projects with limited pipeline capacity or to export volumes to areas not serviced by pipeline. This may change in the future as companies such as Southern Pacific, MEG Energy, and Cenovus contract rail transport to secure transportation for their production and to access higher value markets.

Rail continues to play an important role in supplying the diluent needed to transport bitumen through pipelines. Currently, Canada's two main rail providers handle diluent at the Alberta Diluent Terminal in Edmonton, in addition to shipping crude oil from the Bakken play in Saskatchewan.

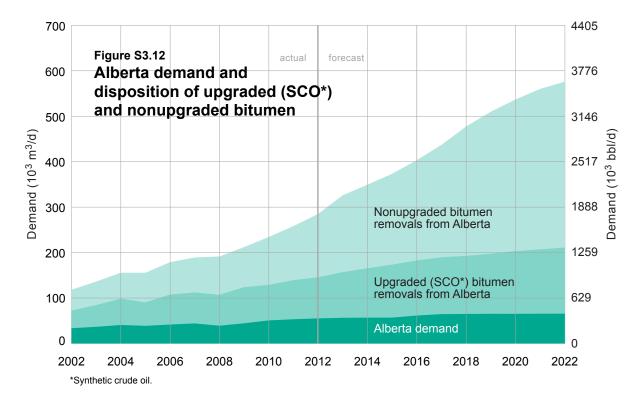
In the short term, it is anticipated that rail will continue to grow as producers seek to bypass short-term pipeline bottlenecks to take advantage of higher prices in PADD areas with refineries capable of handling heavier crudes. In the longer term, however, growth in shipments of bitumen by rail will depend on several factors, such as the availability and supply of diluent, the prices offered by other commodity producers already using rail, and the development of handling facilities to fill cars with bitumen. Currently, Canexus is expanding its rail terminal capacity at its Bruderheim facility, northeast of Edmonton. In addition, Keyera has announced that it will proceed with construction of the Keyera South Cheecham Rail and Truck Terminal, located southeast of Fort McMurray.

3.2.5 Demand for Upgraded Bitumen and Nonupgraded Bitumen

Alberta oil refineries use bitumen (both upgraded and nonupgraded) and other feedstocks to produce a wide variety of refined petroleum products. Overall, total Alberta demand for upgraded and nonupgraded bitumen was 55.2 10³ m³/d in 2012, which is 2 per cent above the 2011 level of 54.2 10³ m³/d. This increase was primarily due to higher capacity utilization rates of refineries.

In 2012, the five refineries in Alberta, with a total capacity of 74.6 10³ m³/d, used 46.5 10³ m³/d of upgraded bitumen and 2.9 10³ m³/d of nonupgraded bitumen. Additional demand for upgraded bitumen as diesel fuel and plant fuel accounted for 5.8 10³ m³/d in 2012, compared with 5.9 10³ m³/d in 2011, a decrease of 2 per cent. Alberta refineries consumed 32 per cent of Alberta upgraded bitumen production and 2 per cent of nonupgraded bitumen production in 2012, compared with the 33 per cent of Alberta upgraded bitumen production and 2 per cent of nonupgraded bitumen production consumed in 2011.

Light sweet upgraded bitumen has two principal advantages over light crude oil as a refinery feedstock: it is very low in sulphur and produces very little heavy fuel oil. The latter is particularly desirable in Alberta, where there is virtually no local market for heavy fuel oil. Among the disadvantages of using upgraded bitumen in conventional refineries are the low quality output of distillate and the high level of aromatics (benzene) that must be recovered.


Overall demand for Alberta upgraded bitumen and blended bitumen is influenced by many factors, including the price differential between light and heavy crude oil, the expansion of refineries currently processing upgraded bitumen and blended bitumen, the altering of current light crude oil refineries to process upgraded bitumen and blended bitumen, and the availability and price of diluent for shipping blended bitumen.

Upgraded bitumen is also used by the oil sands upgraders as fuel for their transportation needs and as plant fuel. Suncor reports that it sells bulk diesel fuel to companies that transport it to other markets in tanker trucks. Suncor also operates a Suncor Energy-branded "cardlock" station where it sells diesel fuel supplied from its oil sands operation in the Fort McMurray area. In 2012, the sale of refined upgraded bitumen as diesel fuel oil accounted for about 8 per cent of Alberta upgraded bitumen demand, similar to 2011. **Figure S3.12** shows that by 2022, Alberta demand for upgraded and nonupgraded bitumen will increase to about $65.6 \ 10^3 \ m^3/d$. It is projected that, on average, upgraded bitumen will account for approximately 84 per cent of total Alberta demand, and nonupgraded bitumen will account for approximately 16 per cent throughout the forecast period.

As illustrated in **Figure S3.12**, removals of upgraded bitumen from Alberta will increase from 90.5 10^3 m³/d in 2012 to 145.6 10^3 m³/d in 2022, with removals of nonupgraded bitumen increasing from 139.4 10^3 m³/d to 364.9 10^3 m³/d over the same period.

Given the current quality of upgraded bitumen, western Canada's eight refineries, with a total capacity of 99.8 10³ m³/d, are able to blend up to 34 per cent upgraded bitumen and a further 2 per cent of blended bitumen with crude oil. These refineries receive upgraded bitumen from both Alberta and Saskatchewan. The four refineries in the Sarnia area of eastern Canada, with a combined total capacity of 56.6 10³ m³/d, are currently the sole ex-Alberta Canadian market for Alberta upgraded bitumen.

With resurgent light oil supplies in western Canada and the U.S. Midwest, and an oversupplied U.S. Midwest market, discounting of upgraded bitumen and western Canada light oil is expected to continue in the short term. The largest export markets for Alberta upgraded and nonupgraded bitumen have traditionally been the U.S. Midwest, with a refining capacity of 569³ m³/d, and the U.S. Rocky Mountain region, with a refining capacity of 98 10³ m³/d. However, these markets are now currently oversupplied due to the increase in light oil production and limited pipeline capacity to other markets. As such, there is increasing interest in accessing other market regions going forward. Among the other regions is the U.S. Gulf Coast, with a refining capacity of 1399 10³ m³/d. Access to this region is of particular importance for nonupgraded bitumen, as this region has traditionally been served by heavy oil and maintains refineries capable of handling the nonupgraded bitumen.

HIGHLIGHTS

Remaining established reserves increased almost 10 per cent year over year.

Reserves additions from new drilling and enhanced recovery schemes replaced 189 per cent of production in 2012.

Production increased 14 per cent in 2012 compared with 2011.

There were 3107 oil wells placed on production in 2012, a decrease of 1 per cent from 2011.

4 CRUDE OIL

In Alberta, crude oil (also known as conventional oil) is deemed to be oil produced outside the oil sands areas or, if within the oil sands areas, from formations other than the Mannville or Woodbend. Crude oil is classified as light-medium if its density is less than 900 kilograms per cubic metre (kg/m³) or as heavy if its density is 900 kg/m³ or greater.

4.1 Reserves of Crude Oil

4.1.1 Provincial Summary

The ERCB estimates the remaining established reserves of conventional crude oil in Alberta to be 269.2 million cubic metres (10⁶ m³), representing about one third of Canada's remaining conventional reserves. This is a year-over-year increase of 23.3 10⁶ m³, or 9.5 per cent, resulting from production, reserves adjustments, and additions from drilling that occurred during 2012.

Table R4.1 shows the changes in Alberta's reserves and production of lightmedium and heavy crude oil as of December 31, 2012, while **Figure R4.1** shows the province's remaining conventional oil reserves over time. Remaining reserves have decreased to 22 per cent of the peak reserves of 1223 10⁶ m³ set in 1969.

4.1.2 In-Place Resources

The total initial in-place and remaining in-place resources for conventional oil in Alberta stand at 12 026 10⁶ m³ and 9374 10⁶ m³, respectively. Sixty-four per cent of remaining in-place resources (6014 10⁶ m³) are in the largest 200 pools. This remaining resource in place represents a substantial potential for increased recovery through enhanced oil recovery (EOR) or new drilling and completion techniques, such as high-density drilling and multistage fracturing. On average, 25 per cent of the total oil in place in these pools is expected to be recovered with today's technology. Additionally, the new shale- and siltstone-hosted hydrocarbon resources study discussed in **Section 2.2.1** identified 67 320 10⁶ m³ of unconventional in-place shale oil resources in six key shale formations in Alberta.

4.1.3 Established Reserves

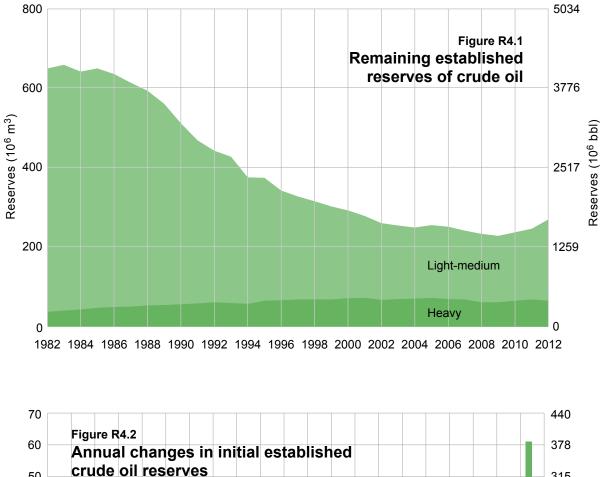
The initial established reserves attributed to the 323 new oil pools defined in 2012 totalled 5.8 10^6 m³ (an average of 18 thousand [10^3] m³ per pool), up from 4.0 10^6 m³ in 2011. **Table R4.2** breaks down the changes to initial established reserves in 2012 into the following categories: new discoveries, development of existing pools, new

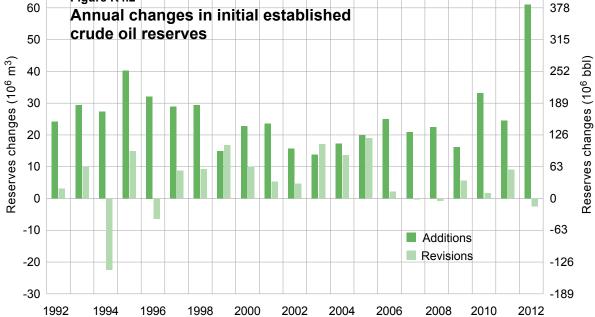
	2012	2011	Change
Initial established reserves ^a			
Light-medium	2 525.0	2 474.7	+50.4
Неаvy	396.7	388.5	+8.2
Total	2 921.7	2 863.2	+58.5
Cumulative production ^a			
Light-medium	2 320.5	2 296.7	+23.8
Неаvy	332.0	320.6	+11.4
Total	2 652.5	2 617.3	+35.2 [⊳]
Remaining established reserves ^b			
Light-medium	204.5	178.0	+26.5
Неаvy	64.7	67.9	-3.2
Total	269.2	245.9	+23.3
	(1 694 10 ⁶ bbl ^c)		
Annual production			
Light-medium	23.8	20.3	+3.5
Неаvy	8.5	8.1	+0.4
Total	32.3	28.4	+3.9

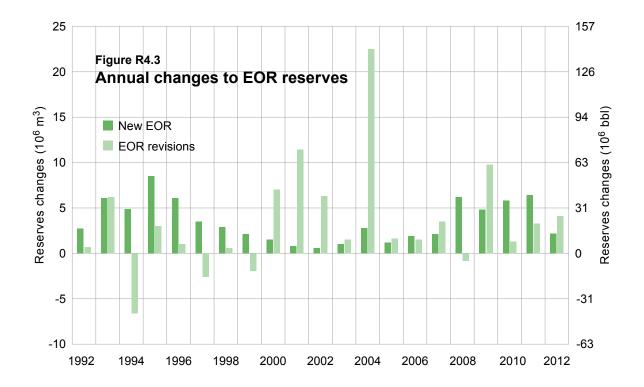
Table R4.1 Reserves and production change highlights (10⁶ m³)

^a Any discrepancies are due to rounding.

^b May differ from annual production due to amendments to reported production and other reasons.


° bbl = barrels.


and expansions to EOR schemes, and revisions to existing reserves. **Figure R4.2** shows the history of additions and net revisions to reserves. Net revisions represent the sum of all negative and positive revisions to pool reserves made over the year.


The ERCB processed 53 applications, significantly fewer than the 130 in 2011, for new EOR schemes or expansions to existing schemes, resulting in reserves additions totalling 2.2 10⁶ m³, compared with 6.4 10⁶ m³ in 2011 (**Figure R4.3**). Development of existing pools added established reserves of 52.9 10⁶ m³, the largest increase in over 25 years. This is discussed in more detail in **Section 4.1.3.1**. Total reserves growth from new

	Light-medium	Heavy	Totalª
New discoveries	5.3	0.5	5.8
Development of existing pools	46.4	6.5	52.9
Enhanced recovery (new/expansion)	1.6	0.6	2.2
Revisions	-2.9	+0.6	-2.4
Total ^a	+50.4	+8.2	+58.5

^a Any discrepancies are due to rounding.

drilling plus new and expanded EOR schemes (excluding revisions) amounted to 61 10^6 m³, replacing 189 per cent of the 32.3 10^6 m³ total conventional crude oil production in Alberta. This compares with a previous five-year average replacement ratio of about 83 per cent. Revisions to existing reserves resulted in an overall net change of $-2.4 \ 10^6$ m³. The total increase in initial established reserves for 2012 amounted to 58.5 10^6 m³, compared with 2011's 33.5 10^6 m³. **Table B.3** in **Appendix B** provides a history of conventional oil reserves growth and cumulative production from 1968 to 2012.

As of December 31, 2012, oil reserves were assigned to 10 570 light-medium and 2804 heavy crude oil pools in the province. While some of these pools contain thousands of wells, most consist of a single well. About 70 per cent of the province's remaining oil reserves are recoverable from the largest 3 per cent of pools (400 pools), most discovered before 1980. The largest of these pools in terms of remaining reserves include Pembina Cardium, Swan Hills Commingled Pool 001, Redwater Commingled Multifield Pool 9508, Ferrier Commingled Pool 001, and Evi Commingled Pool 001. In contrast, the smallest 75 per cent of pools contain only 5 per cent of remaining reserves.

While the median pool size has consistently been less than 10 10³ m³ since the mid-1970s, the average size has declined from 155 10³ m³ in 1970 to about 20 10³ m³ today. The largest oil pools discovered over the past ten years include the Judy Creek Beaverhill H Pool and Pembina Cardium JJJ Pool, with currently booked remaining reserves of 1040 10⁶ m³ and 900 10⁶ m³, respectively.

A detailed pool-by-pool list of reservoir parameters and reserves data for all of Alberta's oil pools is available on CD from the ERCB's Information Services (see **Appendix C**).

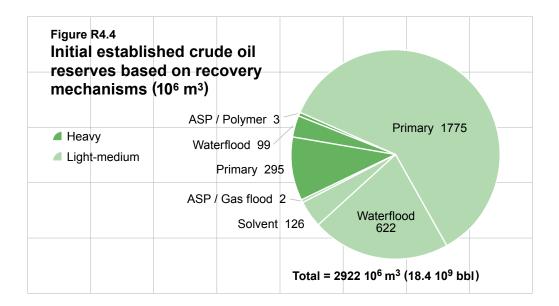
4.1.3.1 Largest Reserves Changes

Table R4.3 lists pools with the largest reserves changes in 2012. By far the most significant change was to the Pembina Cardium, which saw initial established reserves increase by 15 400 10³ m³ to 251 200 10³ m³ as a result of extensions to the primary area. This compares with a total increase due to pool development of 52.9 10⁶ m³. There continues to be potential for significant reserves growth from new horizontal drilling in the Cardium Formation at Pembina, Willesden Green, and other fields. Horizontal, multistage fractured wells are being drilled on the periphery of the main pools where permeability declines to less than 1 millidarcy (mD) as a result of a change to a shalier facies. Horizontal drilling is also coaxing new reserves from the tighter platform facies in

	Initial established reserves (10³ m³)		
Pool	2012	Change	Main reason for change
Ante Creek North Triassic E	2 883	+485	Pool development
Brazeau River Cardium LL	567	+501	Pool development and reassessment of reserves
Carson Creek Beaverhill C	448	+448	Reassessment of produced fluid and reserves
Evi Commingled Pool 001	6 454	+6 172	Pool development and amalgamation of pools
Garrington Commingled Pool 002	11 760	+4 701	Pool development and reassessment of reserves
Harmattan East Cardium C	563	+561	Pool development and reassessment of reserves
Innisfail D-3	13 700	-350	Reassessment of reserves
Judy Creek Beaverhill Lake A	60 405	+1 700	Reassessment of tertiary scheme
Judy Creek Beaverhill Lake H	1 265	+1 142	Pool development
Kaybob Triassic G	1 305	+1 071	Pool development
Killam North Upper Manville F2F	1 146	-266	Reassessment of waterflood reserves
Lloydminster Lloydminster F	1 258	+328	Pool development and new waterflood scheme
Lloydminster Commingled Pool 012	9 477	+2 550	Pool development and reassessment of reserves
Lochend Commingled Pool 001	1 416	+407	Pool development and reassessment of reserves
Mooney Bluesky A	2 463	+1 046	Development of chemical flood reserves
Morgan Commingled Pool 0018	8 008	+616	Pool development and reassessment of EOR scheme
Nipisi Slave Point D	556	+377	Pool development
Pembina Cardium	251 200	+15 400	Pool development and reassessment of reserves
Pouce Coupe South Boundary B	2 892	+423	Reassessment of waterflood reserves
Red Earth Commingled Pool 001	7 383	+412	Pool development
Redwater Commingled MFP9508	7 304	+509	Reassessment of reserves
Rycroft Montney C	670	+310	Pool development and reassessment of reserves
Sawn Lake Slave Point J	1 848	+334	Pool development
Spirit River Commingled Pool 005	654	+501	Pool development and reassessment of reserves
Wipiti Commingled Pool 001	2 322	+488	Pool development
Wayne-Rosedale Commingled MFP9501	1 616	+1 321	Pool development and reassessment of reserves

Table R4.3 Major oil reserves changes, 2012

the Beaverhill Lake and Slave Point formations as demonstrated by the 1700 10³ m³ and 6172 10³ m³ increase in reserves in the Judy Creek Beaverhill Lake A Pool and Evi Commingled Pool 001, respectively. The largest negative revision was to Innisfail D-3 Pool, where reserves were revised downwards by 350 10³ m³.

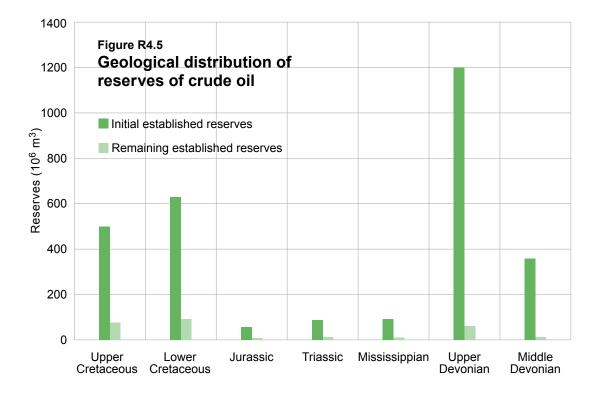

4.1.1. Distribution by Recovery Mechanism

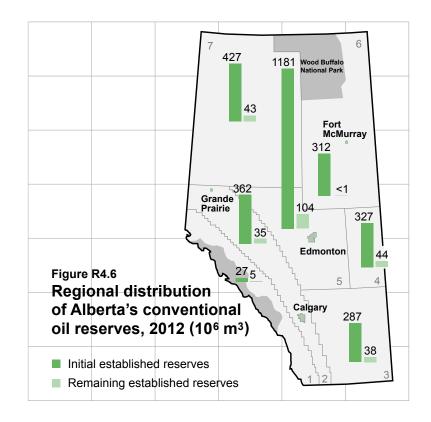
The overall recovery efficiency for Alberta's conventional crude oil averages 24 per cent based on total initial volume in place and initial established reserves of 12 026 10⁶ m³ and 2922 10⁶ m³, respectively. **Figure R4.4** and **Table R4.4** show the distribution of in-place volumes and reserves by recovery mechanism and crude oil classification.

In light-medium pools under waterflood, recovery increased from an average of 15 per cent under primary depletion to 28 per cent under waterflood. Pools under solvent flood, on average, recovered 12 per cent more than projected theoretical waterflood recovery. Primary recovery in heavy crude pools has increased from an average 8 per cent in 1990 to 11 per cent in 2012 as a result of improved water handling, increased drilling density, and the use of horizontal wells with multistage fracturing. Incremental recovery from all waterflood projects represents about 25 per cent of the province's initial established reserves, while solvent floods are projected to add 5 per cent to the province's recoverable reserves. Alkali surfactant polymer (ASP) flooding is proving to be very effective and becoming more accepted, typically adding 3 to 10 per cent recovery over waterflood. Polymer flooding is most effective and used mainly in heavy oil pools.

	Initial	Initia	l established	reserves (1	0 ⁶ m³)	Average recovery (%)			
Crude oil type and pool type	volume in place (10 ⁶ m³)	Primary	Waterflood/ gas flood	Solvent flood	Total	Primary	Waterflood/ gas flood	Solvent flood	Total
Light-medium									
Primary	4 917	947	0	0	947	19	-	-	19
Waterflood	3 419	515	429	0	944	15	13	-	28
Solvent flood	1032	273	177	126	576	26	17	12	56
ASP	21	3	6	2	11	14	29	10	52
Gas flood	126	37	10	0	47	29	8	-	37
Heavy									
Primary	1 764	201	0	0	201	11	-	_	11
Waterflood	695	88	91	0	179	13	13	-	26
Polymer	22	2	2	1	5	9	9	5	23
ASP	30	4	6	2	12	13	20	7	40
Total	12 026	2 070	721	131	2 922	17	6	1	24
Percentage of to established reserved		71%	25%	5%	100%				

Table R4.4 Conventional crude oil reserves by recovery mechanism as of December 31, 2012


4.1.2. Distribution by Geological Formation and Area


The distribution of reserves by geological period (**Figure R4.5**) shows that the Cretaceous and Upper Devonian ages provide the major source for remaining conventional oil. **Figure R4.6** depicts reserves by Petroleum Services Association of Canada (PSAC) area with the central part of the province (PSAC 5) containing most of the remaining reserves.

4.1.3. Oil Reserves Methodology

The process of quantifying reserves is governed by many geological, engineering, and economic considerations. Initially there is higher uncertainty in the reserves estimates, but this uncertainty decreases over the life of a pool as more information becomes available and actual production is observed and analyzed. The earliest reserves estimates are usually based on volumetric estimation. An estimate of bulk rock volume is based on net pay isopach maps derived primarily from geological evaluation of well log data. This is combined with data gathered on rock properties, such as porosity and water saturation, to determine oil in place at reservoir conditions. Areal assignments for new single-well oil pools range from 64 hectares (ha) for light-medium oil producing from regionally correlatable geological units to 32 ha or less for heavy oil pools and small reef structures.

Converting volume in place to standard conditions at the surface requires applying oil shrinkage data obtained from pressure, volume, and temperature (PVT) analysis. A recovery factor is applied to the in-place volume to yield recoverable reserves. Oil recovery factors vary depending on oil viscosity, rock permeability, drilling density, rock wettability, reservoir heterogeneity, and reservoir-drive mechanism. Recoveries range from 5 per cent for heavy oils to over 50 per cent for light-medium oils producing from highly permeable reefs with full pressure support from an active underlying aquifer. Provincially, 25 per cent of the in-place resource is recovered on average.

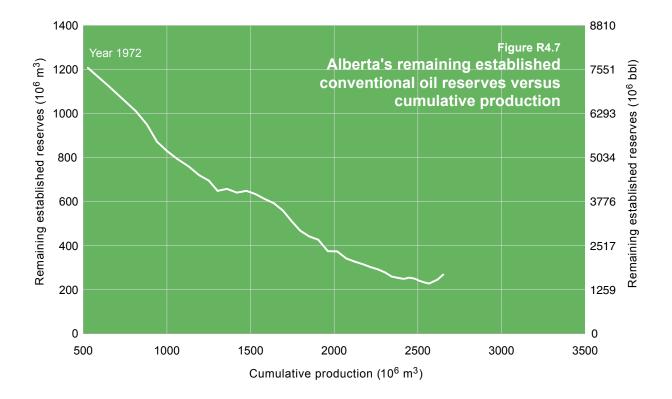
Once there are sufficient pressure and production data, material balance or production decline methods can be used as an alternative to volumetric estimation to determine in-place resources. Analysis by material balance is seldom used as it requires good pressure and PVT data. Production decline analysis, therefore, is the primary method for determining recoverable reserves. When combined with a volumetric estimate of the in-place resource, it also provides a realistic estimate of the pool's recovery efficiency.

Secondary recovery techniques using artificial means of adding energy to a reservoir by water or gas injection can considerably increase oil recoveries. Less common tertiary recovery techniques may be applied by injecting fluids that are miscible with the reservoir oil at high pressures. This improves recovery efficiency by reducing the residual oil saturation at abandonment. However, irregularities in rock quality can lead to channelling, which causes low sweep efficiency and bypass of oil in some areas in the pool.

Incremental recovery over primary depletion is estimated for pools approved for waterflood and is displayed separately in the ERCB's oil reserves database. To accommodate the Alberta government's royalty incentive programs, incremental recovery over an estimated base-case waterflood recovery is determined for tertiary schemes. Typically a base-case waterflood recovery is estimated even in cases where no waterflood was implemented before the solvent flood.

Reserves numbers published by the ERCB represent estimates for in-place, recoverable reserves and recovery factors based on the most reasonable interpretation of available information from the volumetric, production decline, and material balance methods.

4.1.4 Ultimate Potential


In 1994, based on the geological prospects at that time, the ERCB estimated the ultimate potential of conventional crude oil to be 3130 10⁶ m³. This estimate does not include potential oil from very low permeability reservoirs, referred to by industry as "tight oil." **Figure R4.7** illustrates the historical decline in remaining established reserves relative to cumulative oil production.

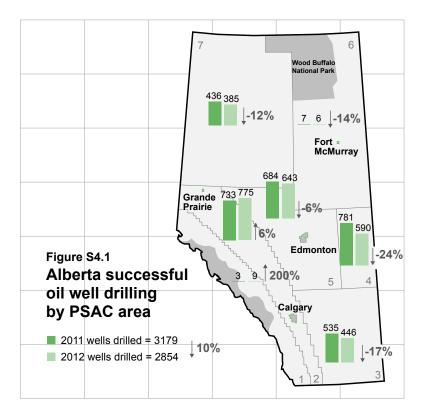
4.2 Supply of and Demand for Crude Oil

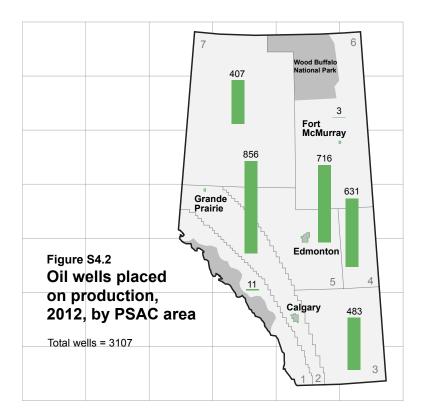
In projecting crude oil production, the ERCB considers two components: expected crude oil production from existing wells at year-end and expected production from new wells. Total forecast production of crude oil is the sum of these two components. Demand for crude oil in Alberta is based on provincial refinery capacity and use. Alberta crude oil supply in excess of Alberta demand is marketed outside the province.

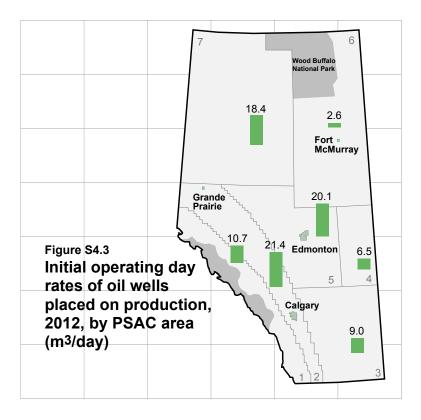
4.2.1 Crude Oil Production – 2012

Starting in 2010, total crude oil production in Alberta reversed the downward trend that was the norm since the early 1970s. Since 2010, light-medium crude oil production has increased as a result of increased horizontal drilling activity with the introduction of multistage hydraulic fracturing technology. The successful application of this technology and increased drilling resulted in total crude oil production increasing by 14 per cent in 2012

to 88.4 10³ m³/d from 77.9 10³ m³/d. Light-medium crude oil production increased in 2012 to 65.1 10³ m³/d, an increase of 17 per cent from 2011. Heavy crude oil production also increased, rising 6 per cent to 23.3 10³ m³/d.

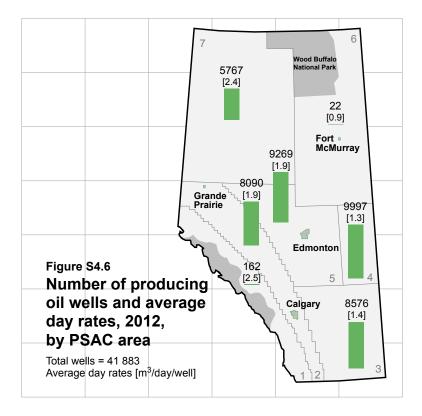

4.2.1.1 Drilling Activity

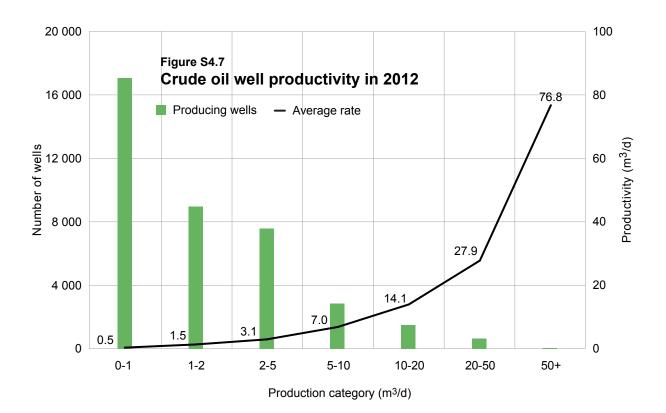

In 2012, 2854 successful oil wells were drilled, an decrease of 10.2 per cent from 2011. **Figure S4.1** shows the number of successful oil wells drilled in Alberta in 2011 and 2012 by PSAC geographical area. As shown in the figure, most areas of the province in which drilling occurred, in particular PSAC Areas 3, 4, and 7, experienced substantial decreases over last year's levels.


Figure S4.2 depicts the distribution of new crude oil wells placed on production, and **Figure S4.3** shows the initial operating day rates of new wells in 2012. The number of oil wells placed on production in a given year generally tends to follow crude oil well drilling activity, as most wells are put on production shortly after being drilled. In 2012, however, the number of wells placed on production decreased by 1 per cent, from 3138 in 2011 to 3107.

4.2.1.2 Production Characteristics

Historical oil production by PSAC area is illustrated in **Figure S4.4**. In 2012, PSAC Areas 2, 4, and 5 experienced increases in production when compared with 2011, ranging from a 2 per cent increase in PSAC Area 4 to a 27 per cent increase in PSAC Area 2.

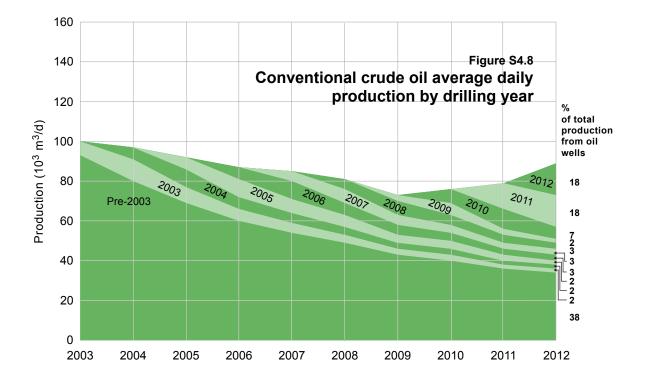

Figure S4.5 shows the total average daily production rate and the number of wells producing crude oil. Initial average daily production rates were calculated for new wells, using the first full calendar year of production. The number of wells producing oil has increased over time from 9100 in 1970 to 41 883 in 2012. The average annual production rate of crude oil producing wells, however, has been on the decline since 1973.

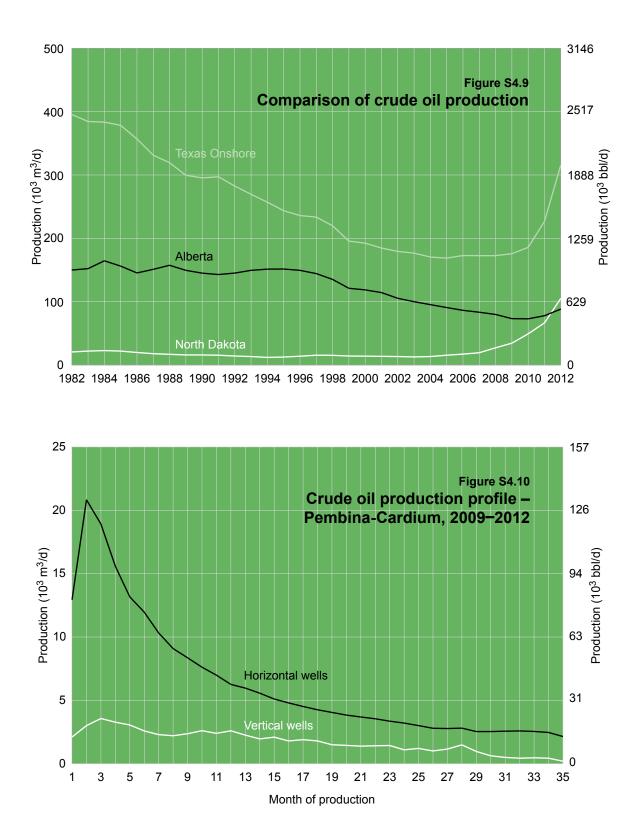

In addition to the 41 883 crude producing oil wells in 2012, there were about 2720 wells classified as gas wells that were producing oil. Although these gas wells represented 6 per cent of the total wells that produced oil, they produced at a very low average rate of $0.2 \text{ m}^3/\text{d}$ and accounted for less than 1 per cent of total production. About 9664 producing horizontal oil wells, despite representing only 22 per cent of producing oil wells, contributed about 47 per cent to the total crude oil production because of the higher average production rate per well.

The average daily production rate per well in 1973 for all producing oil wells was 23 m³/d. This average declined to 5.5 m³/d by 1991, reaching the lowest level of 1.9 m³/d by 2009 where it remained until 2011 when it began to increase as a result of increased drilling activity.

Figure S4.6 depicts producing oil wells and the average daily production rates of those wells by region in 2012. The average well productivity of producing oil wells in 2012 was 2.0 m³/d. Roughly 44 per cent of producing oil wells produce at rates less than 1 m³/d per well, a characteristic typical of mature basins. In 2012, the 17 060 oil wells in this category produced at an average rate of 0.5 m³/d and accounted for only 10 per cent of the total crude oil produced. **Figure S4.7** shows the distribution of crude oil producing wells (including horizontal oil wells) based on their average production rates in 2012.

4-14


In 2012, 2379 new horizontal oil wells (including those using multistage fracturing technology) were brought on production, an increase of 31 per cent from the 2011 level of 1818 horizontal wells. This raises the total number of horizontal wells to 9664.

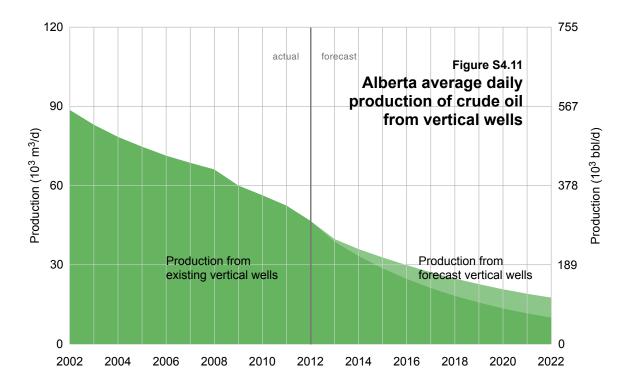

For all types of completion for new horizontal wells, the initial production rate was $6.5 \text{ m}^3/\text{d}$, compared with $3.3 \text{ m}^3/\text{d}$ for vertical wells.

Crude oil production from existing wells placed on production from 2003 to 2012 is depicted in **Figure S4.8**. This figure illustrates that wells placed on production in the last five years represent 48 per cent of crude oil production in 2012.

Figure S4.9 compares historical Alberta crude oil production with crude oil production from Texas onshore and North Dakota. North Dakota production has been relatively flat since 1981; however, since around 2007, production has escalated rapidly, and 2012 production levels are approximately five times the 2007 production levels due to the successful application of horizontal multistage fracturing technology. North Dakota's oil production surpassed Alberta's conventional oil production in 2012, which may result in reduced U.S. demand for Alberta's crude oil. Since 2010, Texas onshore and Alberta production have also reversed the downward production trend, exhibiting significant growth in 2012.

Figure S4.10 shows the oil production profiles for the first 35 months for a representative sample set of vertical and horizontal oil wells in the Pembina Field that are producing crude oil from the Cardium Formation. Oil wells that were placed on production within the 2010 to 2012 period were used to illustrate the difference in production profiles by well type.

Total production from new wells is a function of the number of new wells that are anticipated to be placed on production, initial production rates, and the expected average decline rates for these new wells.

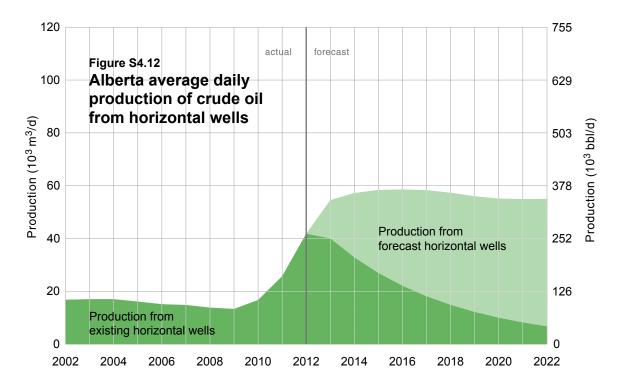

4.2.2 Crude Oil Production – Forecast

In projecting crude oil production over the forecast period, the ERCB has separated production from vertical wells from horizontal wells. The forecast for production from new vertical wells acknowledges industry's continued interest in drilling for oil using conventional technology. The horizontal category of wells includes traditional and multistage-fractured horizontal wells.

To forecast production from each category, production from existing and new wells placed on production each year has been analyzed. The number of wells placed on production and the average productivity of the wells in each category were the main factors used to project oil production over the forecast period.

4.2.2.1 Vertical Wells

- **Figure S4.11** illustrates the projected crude oil production from vertical wells. The ERCB based its projection on the following assumptions:
- Production from existing vertical wells will decline by 14.0 per cent per year.
- The number of new vertical oil wells placed on production is projected to decrease from 728 in 2012 to 690 in 2013 and is expected to decline to 520 wells in 2022. This well count is about 50 per cent lower than last year's forecast and reflects the view that many new wells will be horizontal wells using multistage fracturing technology.

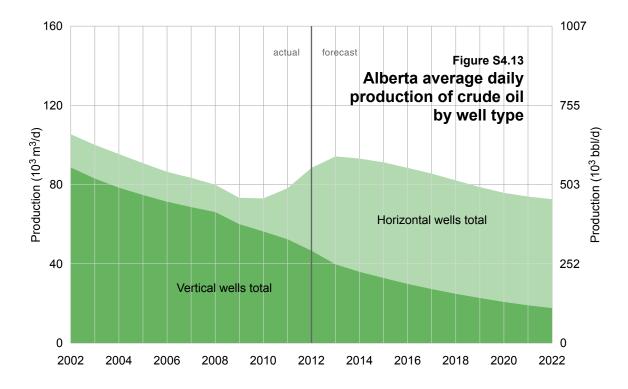

- The average initial production rate for new vertical wells is projected to be 3.0 m³/d per well and is expected to remain constant for the forecast period.
- Production from new wells will decline at a rate of 27 per cent the first year, 22 per cent the second year, 21 per cent the third year, 19 per cent the fourth year, 17 per cent the fifth year, and 16 per cent over the rest of the forecast period.

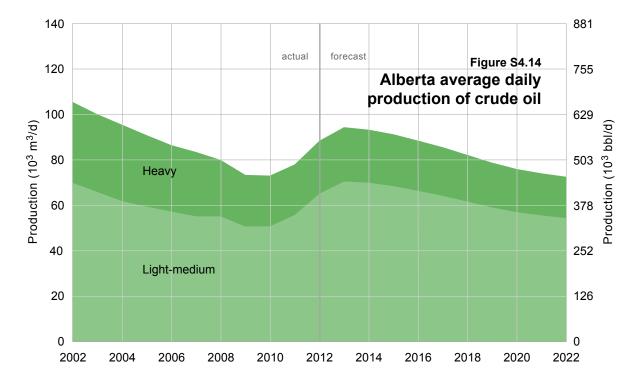
4.1.4. Horizontal Wells

A methodology similar to that used for vertical wells is used to project crude oil production from horizontal wells (both traditional and multistage fractured). Potential crude oil production from existing and new wells is combined to project total production in this category of wells over the forecast period.

Figure S4.12 illustrates the projected crude oil production from horizontal wells. The ERCB based its projection on the following assumptions:

- Production from existing wells will decline at a rate of 18.0 per cent per year.
- The number of new horizontal oil wells placed on production is projected to decrease from 2379 in 2012 to 2310 in 2013 and 2014 and to decline gradually to 2080 in 2022. The forecast number of horizontal oil wells has significantly increased relative to the forecast made in last year's report and reflects actual activity in 2012, industry's projection of increased horizontal drilling, and the expectation of continued strong crude oil prices.
- The average initial production rate for new conventional horizontal wells is projected to be 7.0 m³/d per well in 2013 and decline to 5.0 m³/d per well by the end of forecast period




• Production from new wells will decline at a rate of 40 per cent the first year, 24 per cent the second year, 18 per cent the third year, 15 per cent the fourth year, 12 per cent the fifth year, and 10 per cent over the remaining forecast period.

The projected total crude oil production, which comprises production from both existing wells and new vertical and horizontal wells, is illustrated in **Figure S4.13**. Based on actual activities and industry projections, the production forecast is higher than what was forecast last year, with production in 2013 forecast at 94.3 10^3 m³/d compared with last year's forecast of 87.1 10^3 m³/d for the same year.

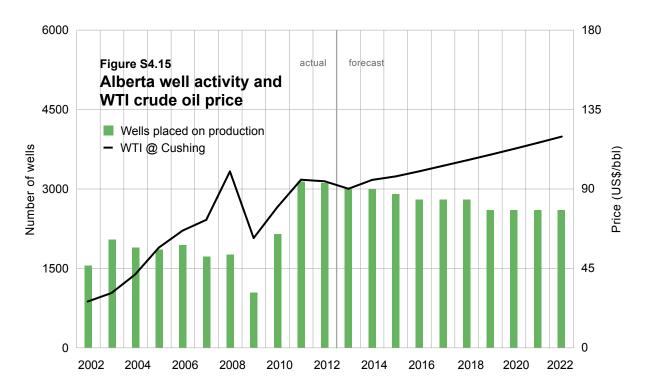
Figure S4.14 illustrates the split for light-medium and heavy crude oil. Light-medium crude oil production is expected to increase from 65.03 10³ m³/d in 2012 to 70.5 10³ m³/d in 2013, and decline to 54.4 10³ m³/d in 2022. Over the forecast period, heavy crude oil production is also expected to follow the same trend, reaching 23.8 10³ m³/d in 2013 and declining to 18.1 10³ m³/d. **Figure S4.14** also illustrates that by 2022, heavy crude oil production will hold the same proportion of total conventional crude oil production in Alberta (25 per cent) for the remainder of the forecast period.

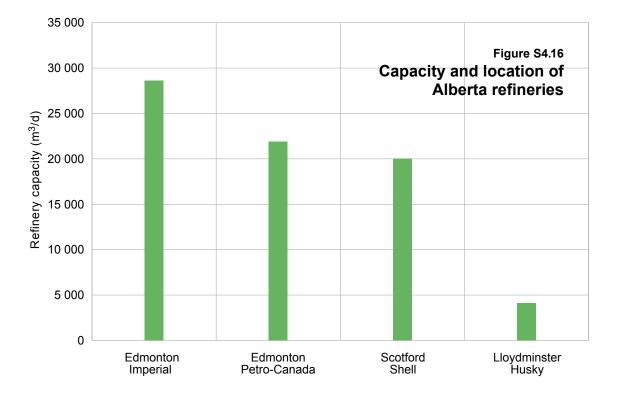
This production forecast assumes that crude oil production will increase by only 6.6 per cent in 2013, down from the actual increase of 14 per cent in 2012, due to an anticipated decrease in the number of wells placed on production for 2013. Crude oil production is expected to peak in 2013 and begin declining at an average rate of between 2 to 4 per cent over the remainder of the forecast period. This is a reflection of the lower levels of drilling activity expected over time and lower average initial production rates forecast for new horizontal wells. The combined forecasts for existing and future wells indicate that total crude oil production will increase from 88.4 10³ m³/d in 2012 to 94.3 m³/d in 2013, before declining to 72.6 10³ m³/d in 2022.

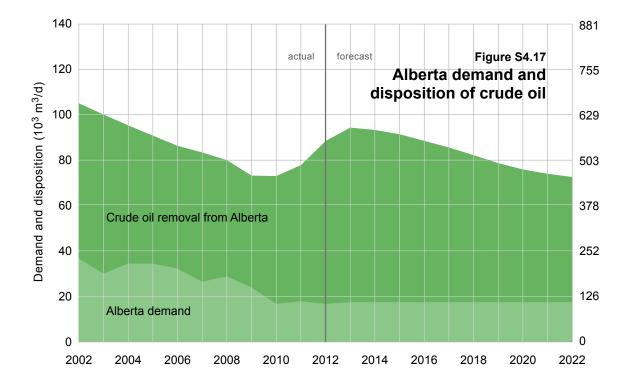
Figure S4.15 illustrates the annual number of new wells expected to be placed on production from 2013 to 2022 and includes the forecast for WTI crude oil price. In spite of a strong crude oil price forecast, oil drilling activity is expected to moderate, with an estimated 2600 wells placed on production at the end of the forecast period. Over the longer term, investment dollars are expected to be more evenly distributed between gas and oil drilling.

4.2.3 Crude Oil Demand

Oil refineries use mainly crude oil, butanes, and natural gas as feedstock, along with upgraded and nonupgraded bitumen and pentanes plus, to produce a wide variety of refined petroleum products (RPPs). The key determinants of crude oil feedstock requirements for Alberta refineries are domestic Albertan demand for RPPs, shipments to other western Canadian provinces, exports to the United States,


and competition from other feedstocks. Since Alberta is a "swing" supplier of RPPs in western Canada, a refinery closure or expansion in this market may have a significant impact on the demand for Alberta RPPs and on Alberta crude oil feedstock requirements.


In 2012, Alberta operating refineries, with a total inlet capacity of 74.6 10^3 m³/d of crude oil and equivalent, processed 17 10^3 m³/d of conventional crude oil. This is a 6 per cent decrease in crude oil processed relative to 2011.


Both upgraded and nonupgraded bitumen, together with pentanes plus, constitute the remaining feedstock processed through Alberta refineries. **Figure S4.16** illustrates the current capacity and location of refineries in Alberta. Additions to crude oil refining capacity are not expected over the forecast period.

In 2012, the refinery utilization capacity was about 89 per cent, up from 88 per cent in 2011 and 84 per cent in 2010. The forecast assumes that total crude oil use in Alberta's refineries will increase to $17.5 \ 10^3 \ m^3/d$ in 2013 and will remain at this level for the remainder of the forecast period.

Shipments of crude oil outside of Alberta, depicted in **Figure S4.17**, amounted to 81 per cent of total production in 2012. The ERCB expects that by 2022, this figure will slowly decrease to about 76 per cent of production due to the decline expected in Alberta light-medium and heavy crude oil production in 2022. Currently, conventional crude oil removals are experiencing pipeline constraints and the issue is expected to continue in the near future. Also, light crude oil production from North Dakota and Texas offshore has been on the rise and could significantly affect Alberta crude oil demand in the United States.

HIGHLIGHTS

Alberta's remaining established conventional natural gas reserves decreased by 3.1 per cent in 2012 to 916 billion cubic metres.

Reserves additions as a result of new drilling replaced 25 per cent of conventional gas production.

Marketable gas production declined by 5.6 per cent in 2012, compared with a 4.6 per cent decline in 2011.

There were 1189 new conventional gas well connections and 433 coalbed methane (CBM) and CBM hybrid connections in 2012, down 49 per cent and 58 per cent, respectively, from 2011.

5 NATURAL GAS

Raw natural gas consists mostly of methane and other hydrocarbon gases, but it also contains non-hydrocarbons, such as nitrogen, carbon dioxide, and hydrogen sulphide (H_2S). These impurities typically make up less than 10 per cent of raw natural gas. The estimated average composition of the hydrocarbon component without impurities is about 92 per cent methane, 5 per cent ethane, and lesser amounts of propane, butanes, and pentanes plus. Hydrocarbon components that exist in gaseous form in the reservoir, but which condense and are recovered as a liquid at the surface, may be reported as gas equivalent or condensate. Such liquids, as well as ethane, which is primarily produced as a gas, are referred to as natural gas liquids (NGLs) and are reported in **Section 6**. Marketable gas is the gas that remains after the raw gas is processed to remove constituents and that meets specifications for use as a fuel. Marketable gas reserves are determined by applying a surface loss or shrinkage factor to the raw gas volume, as described in **Section 5.1.3.5**.

In this section, natural gas volumes are referred to as either the actual metered volume with the combined heating value of the hydrocarbon components present in the gas (i.e., "as is") or the volume at standard conditions of 37.4 megajoules per cubic metre (MJ/m³). The average heat content of produced conventional natural gas leaving field plants is estimated to be 39.1 MJ/m³. This compares with a heat content of about 37.0 MJ/m³ for coalbed methane (CBM), which consists mostly of methane.

This section discusses conventional and unconventional natural gas, with unconventional gas being defined as CBM and shale gas.

5.1 Reserves of Natural Gas

5.1.1 Provincial Summary

As of December 31, 2012, the ERCB estimates the remaining established reserves of marketable conventional gas in Alberta downstream of field plants to be 916 billion (10⁹) m³, with a total energy content of about 36 exajoules. This decrease of 29.4 10⁹ m³ since December 31, 2011, is a result of all reserves additions less production during 2012. These reserves include 28.9 10⁹ m³ of ethane and other NGLs, which are present in marketable gas leaving the field plant and are subsequently recovered at straddle plants. Removal of NGLs results in a 4.6 per cent reduction in the average heating value, from 39.1 MJ/m³ to 37.3 MJ/m³, for gas downstream of straddle plants. Details of the changes in marketable reserves during 2012 are shown in **Table R5.1**. Total provincial initial gas in place and raw

	Gross heating			
	value (MJ/m ³)	2012 volume	2011 volume	Change
Initial established reserves		5 341.1	5 283.1	+58.0
Cumulative production		4 425.4	4 338.0	+87.4ª
Remaining established reserves downstream of field plants				
As is	39.1	915.7	945.1	-29.4
At standard gross heating value	37.4	957.2	987.0	
Minus liquids removed at straddle plants		28.9	29.4	-0.5 ^b
Remaining established reserves				
As is	37.3	886.7 ^b	915.6 ^b	-28.9 ^b
		(31.5 Tcf) ^c	(32.5 Tcf) ^c	
At standard gross heating value	37.4	885.2	913.8	
Annual production	37.4	97.1 ^d	102.4 ^d	-5.3 ^d

Table R5.1 Reserve and production changes in marketable conventional gas (10⁹ m³)

^a Change in cumulative production is a combination of annual production and all adjustments to previous production records.

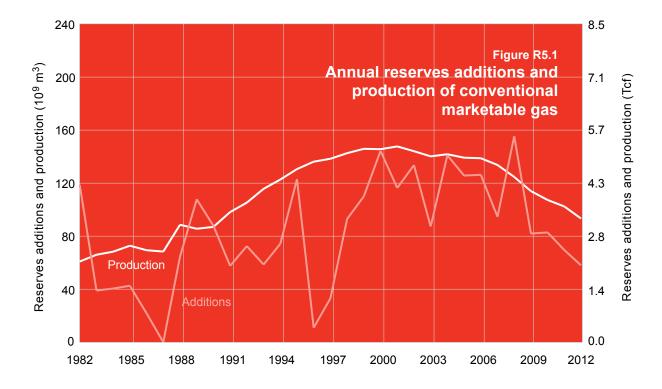
^b Any discrepancies are due to rounding.

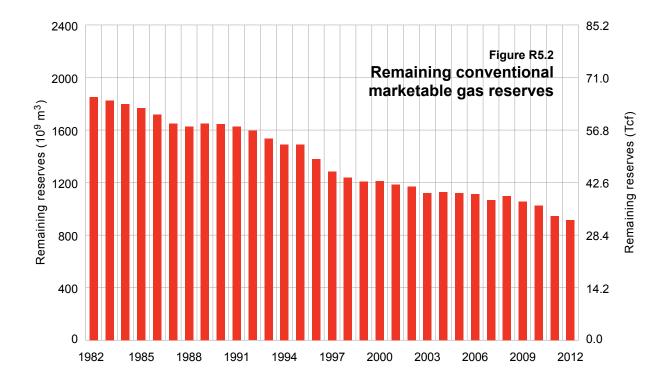
° Tcf = trillion cubic feet.

^d Does not include conventional gas from ERCB-defined unconventional wells.

producible gas reserves for 2012 were 9290.5 and 6182.4 10⁹ m³, respectively, which translates into an average provincial recovery factor of 67 per cent. Total initial established marketable reserves were estimated to be 5341.1 10⁹ m³, representing an average surface loss of 14 per cent.

Annual historical reserves additions and natural gas production are depicted in **Figure R5.1**. It shows that since 1983, reserves additions have generally not kept pace with production. As illustrated in **Figure R5.2**, Alberta's remaining established reserves of marketable conventional gas have decreased by about 51 per cent since 1982.


The ERCB estimates the initial established reserves of CBM to be 101.3 10⁹ m³ as of December 31, 2012, relatively unchanged from 2011. Remaining established reserves in 2012 were 56.7 10⁹ m³, down from 62.0 10⁹ m³ in 2011 due to production.


A summary of CBM reserves and production is shown in **Table R5.2**. In 2012, the annual production from all wells listed as CBM was 8.1 10⁹ m³. This volume represents the total contribution from CBM wells, including wells commingled with conventional gas.¹ The portion of production estimated to be attributed to only CBM is 5.6 10⁹ m³.

5.1.2 In-Place Resource

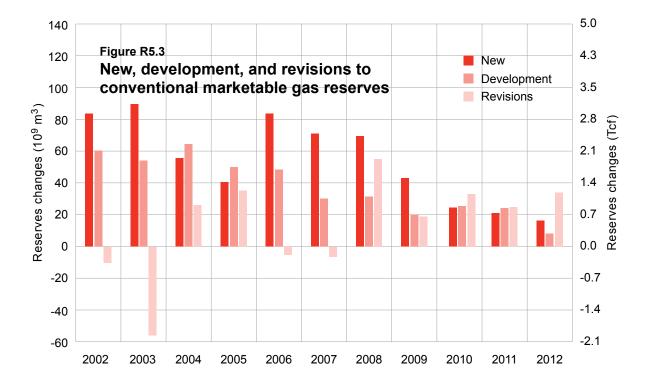
The ERCB estimates the initial in-place resource of conventional and CBM natural gas in Alberta to be 9591 10⁹ m³, consisting of 9290 10⁹ m³ of conventional natural gas and 301 10⁹ m³ of CBM. With conventional

¹ Wells commingled with conventional gas are defined as CBM hybrid wells.

Table R5.2 CBM reserve and production change highlights (10⁹ m³)

	2012	2011	Change
Initial established reserves	101.3	100.9	+0.4
Cumulative production	44.5	38.9	+5.6ª
Remaining established reserves	56.7	62.0	-5.3
	(2.0 Tcf) ^b	(2.2 Tcf) ^b	
Annual production	5.6	6.0	-0.4

^a Change in cumulative production is a combination of annual production and all adjustments to previous production records.


^b Tcf = trillion cubic feet.

cumulative raw production of 5165 10⁹ m³, 4125 10⁹ m³ of this gas remains in the ground. CBM cumulative raw production is 45 10⁹ m³, and 256 10⁹ m³ remains in the ground. As of December 31, 2012, 4381 10⁹ m³ of natural gas remains unproduced in Alberta. With current technologies, 1074 10⁹ m³ is still expected to be produced.

Additionally, the new shale- and siltstone-hosted hydrocarbon resources study discussed in **Section 2.2.1** has identified 95 944 10⁹ m³ (3406 trillion cubic feet [Tcf]) of unconventional in-place shale gas resources in six key shale formations in Alberta. This very large resource represents a huge potential for future development, but the technical, economic, environmental, and social constraints on recoverability were not studied in the report. Consequently, the ERCB has not determined any established reserves from this resource.

5.1.3 Established Reserves of Conventional Natural Gas

Figure R5.3 breaks down the historical annual reserves changes according to new pools, development of existing pools, and reassessment of reserves of existing pools. The 58.0 10⁹ m³ increase in initial reserves for 2012

includes the addition of 16.2 10⁹ m³ attributed to new pools booked in 2012, 8.0 10⁹ m³ from the development of existing pools, and a net reassessment of 33.8 10⁹ m³ for existing pools. Reserves added through drilling (new plus development) totalled 24.2 10⁹ m³, replacing 25 per cent of Alberta's 2012 production, which is the lowest replacement ratio in the last 15 years. Historical reserves growth and production data since 1966 are shown in **Appendix B**, **Table B.4**.

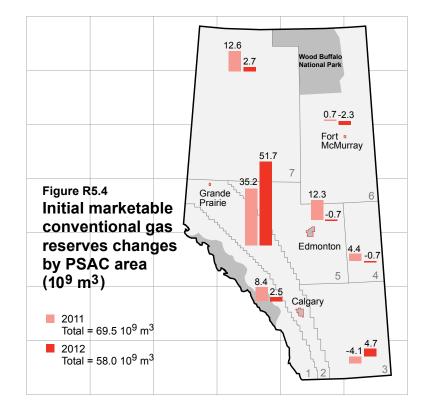
During 2012, a review was done of pools that appeared to have reserves under- or overbooked based on their reserves-to-production ratios; another review was done of large pools that had not been evaluated for several years. Positive revisions to existing pools totalled 126 10⁹ m³, while negative revisions totalled 92 10⁹ m³. The major reserves changes are summarized below.

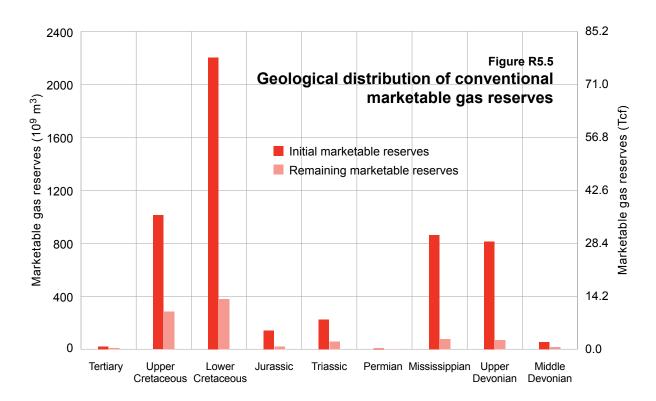
- The 20 pools with the largest changes listed in **Table R5.3** resulted in a net addition of 47.7 10⁹ m³. This increase in reserves was largely a result of infill drilling and completion of previously undeveloped zones.
- Despite the low number of wells being drilled in southeast Alberta, this area still contributes significant volumes of gas to the provincial total. The review of shallow gas pools within the Southeastern Alberta Gas System resulted in a reserves increase of 7.2 10⁹ m³.
- Approximately 4500 pools were evaluated with low or high reserves life indices, resulting in an overall reserves decrease of 4.5 10⁹ m³.

Figure R5.4 illustrates initial marketable gas reserves growth between 2011 and 2012 by areas defined by the Petroleum Services Association of Canada (PSAC). The most significant growth was in PSAC Area 2 (Foothills Front), which accounted for 89 per cent of the total annual increase for 2012. Among the pools in PSAC Area 2 that contributed to this increase in reserves were the Brazeau River Commingled Pool 044, Fir Commingled MFP 9529, Kaybob South Commingled MFP9529, Sundance Commingled MFP 9502, and Wapiti Commingled MFP 9529, for a total reserves increase of 24.5 10⁹ m³.

5.1.3.1 Distribution of Conventional Natural Gas Reserves by Pool Size

The distribution of marketable gas reserves by pool size is shown in **Table R5.4** on page 5-8. Commingled pools are considered as one pool, whereas each pool in a multifield pool is counted as a separate pool. The data show that pools with reserves of less than 30 million (10⁶) m³, while representing 76 per cent of all pools, contain only 10 per cent of the province's remaining marketable reserves. Similarly, pools with reserves greater than 3000 10⁶ m³, while representing only 0.5 per cent of all pools, contain 55 per cent of the remaining reserves.


5.1.3.2 Geological Distribution of Conventional Natural Gas Reserves


The distribution of reserves by geological period is shown in **Figure R5.5**. The Upper and Lower Cretaceous period accounts for about 73 per cent of the province's remaining established reserves of marketable gas and is important as a future source of natural gas.

	Initial established reserves (10 ⁶ m³)				
Pool name	2012	Change	Main reasons for change		
Atlee-Buffalo Southeastern Alberta Gas System	6 080	-1 490	Re-evaluation of initial volume in place		
Bantry Southeastern Alberta Gas System	44 377	+6 868	Re-evaluation of initial volume in place		
Benjamin Commingled Pool 001	13 398	+1 890	Re-evaluation of initial volume in place		
Brazeau River Commingled Pool 044	33 300	+2 700	Re-evaluation of initial volume in place		
Edson Commingled Pool 003	3 692	+1 216	Development and re-evaluation of initial volume in place		
Edson Commingled MFP ^a 9502	10 010	+1 325	Re-evaluation of initial volume in place		
Fir Commingled MFP 9529	36 807	+4 838	Re-evaluation of initial volume in place		
Hussar Southeastern Alberta Gas System	23 798	+2 795	Re-evaluation of initial volume in place and recovery factor		
Kaybob South Commingled MFP 9529	22 475	+4 699	Development and re-evaluation of initial volume in place		
Pembina Cardium	28 531	+3 276	Development and re-evaluation of initial volume in place		
Pembina Cardium JJJ	1 625	+1 611	Development and re-evaluation of initial volume in place		
Red Rock Commingled MFP 9529	15 527	+2 058	Re-evaluation of initial volume in place		
Sundance Commingled MFP 9502	23 037	+6 703	Development and re-evaluation of initial volume in place and recovery factor		
Twining Southeastern Alberta Gas System	2 850	+1 282	Re-evaluation of initial volume in place and recovery factor		
Wapiti Commingled MFP 9529	71 567	+5 558	Re-evaluation of initial volume in place		
Waterton Commingled Pool 001	9 250	-1 610	Re-evaluation of initial volume in place and surface loss		
Waterton Wabamun C	3 075	+1 012	Re-evaluation of initial volume in place and recovery factor		
Wild River Commingled MFP 9529	38 376	+1 579	Re-evaluation of initial volume in place		
Willesden Green Commingled Pool 006	6 234	+2 499	Development and re-evaluation of initial volume in place		
Willesden Green Commingled MFP 9537	552	-1 133	Re-evaluation of initial volume in place		

Table R5.3 Major natural gas reserve changes, 2012

^a MFP (multifield pool) is defined in Section 5.1.3.6.

Reserve range (10 ⁶ m³)	Pools		Initial established marketable reserves		Remaining established marketable reserves	
	#	%	10 ⁹ m ³	%	10º m³	%
3000+	228	0.5	3 015	57	501	55
1501–3000	167	0.4	358	7	61	7
1001–1500	189	0.4	232	4	34	4
501–1000	535	1.1	369	7	47	5
101–500	3 336	7.0	697	13	102	11
30–100	7 132	15.0	380	7	77	8
Less than 30	35 948	75.6	290	5	94	10
Total	47 535	100.0	5 341	100	916	100

Table R5.4 Distribution of natural gas reserves by pool size, 2012

The geological strata containing the largest remaining reserves are the Lower Cretaceous Viking, Mannville, Glauconitic, and Ellerslie, with 35 per cent; the Upper Cretaceous Belly River, Milk River, and Medicine Hat, with 18 per cent; and the Mississippian Rundle, with 8 per cent. Together, these strata contain 61 per cent of the province's remaining established marketable gas reserves.

5.1.3.3 Gas Commingling

Gas commingling is the unsegregated production of gas from more than one pool in a wellbore. As shown in **Table R5.5**, 27 per cent (15 947) of all gas pools in Alberta are commingled. This represents 575 10⁹ m³, about 63 per cent of remaining established reserves. In comparison, in 2001, commingled pools represented only 33 per cent of remaining reserves.

In 2006, the ERCB issued orders establishing two development entities (DEs No. 1 and 2)² that allow for the commingling of gas of certain formations within these areas without an application to the ERCB. Subsequently, the ERCB amended the area described as DE No. 2 in August 2010. The commingling of gas of certain formations within these areas has enabled operators to produce reserves from zones that would otherwise have been uneconomic to produce on their own.

Table R5.6 shows that DEs No. 1 and 2 have remaining established reserves of 64 10⁹ m³ and 222 10⁹ m³, respectively. The commingled gas reserves of DEs No. 1 and 2 account for about 31 per cent of Alberta's remaining established reserves.

5.1.3.4 Reserves of Conventional Natural Gas Containing Hydrogen Sulphide

Hydrogen sulphide (H_2S) is a naturally occurring substance present in many oil and gas reservoirs worldwide. Natural gas that contains more than 0.01 per cent H_2S is referred to as sour in this report.

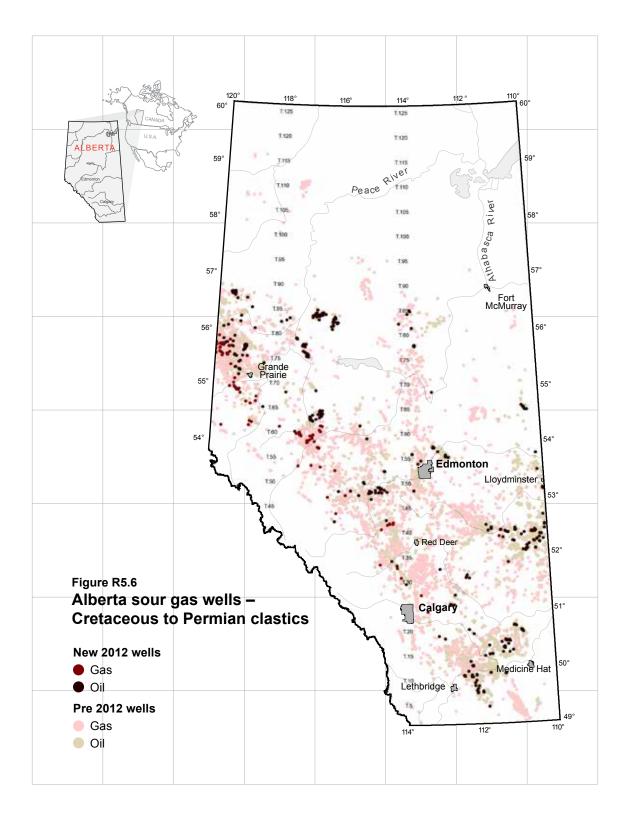
² A DE is a specific area consisting of multiple formations from which gas may be produced without segregation in the wellbore. These areas are described in an order of the ERCB and are subject to certain criteria in the *Oil and Gas Conservation Regulations*, Section 3.051.

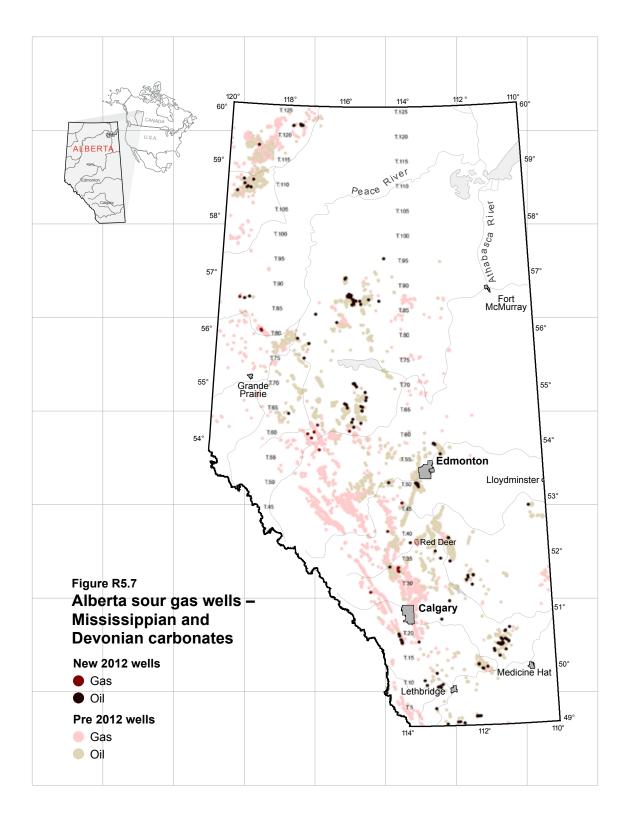
	Number of commingled pools	Number of individual pools	Initial established reserves	Cumulative production	Remaining established reserves
Commingled pools	4 145	15 947	2 880	2 305	575
Noncommingled pools		43 390	2 462	2 121	341
Total			5 342	4 426	916

Table R5.5 Pool reserves as of December 31, 2012 (10⁹ m³)

Table R5.6 Commingled pool reserves within development entities as of December 31, 2012 (10⁹ m³)

	Number of commingled pools	Number of individual pools	Initial established reserves	Cumulative production	Remaining established reserves
DE No. 1	782	2 170	391	327	64
DE No. 2	798	3 919	855	633	222
Total	1 580	6 089	1 246	960	286


In oil and gas reservoirs, H_2S is primarily generated through thermal and biological processes, both of which involve a reaction between dissolved sulphates and hydrocarbons. Thermally generated H_2S produces the highest concentrations of H_2S and occurs in reservoirs that have undergone diagenesis due to deep burial. Biologically generated H_2S is commonly found in shallower, lower-temperature reservoirs, but can also occur in sewers, swamps, composts, and manure piles.


In Alberta, sour gas is found in several regions and formations across the province. The maps in **Figure R5.6** and **Figure R5.7** show the distribution of both 2012 and historical development of H_2S -bearing hydrocarbons within the clastic and carbonate successions of the Western Canada Sedimentary Basin (WCSB). The division of these two maps reflects Alberta's basin architecture, which consists of a Cretaceous- to Permian-aged clastic wedge overlying a primarily Mississippian- and Devonian-aged carbonate succession (as discussed previously in **Section 2.1**).

The highlighted wells on the maps in **Figure R5.6** and **Figure R5.7** showcase areas of new sour gas development contrasted against historical production. As shown by these maps, in 2012, much of the H_2S -bearing hydrocarbon development in the province was focused on the production of oil containing a percentage of H_2S in solution.

Prominent sour gas production for 2012 included the Triassic-focused activity in the northwest, development of Lower Cretaceous- and Jurassic-aged strata east of the foothills, and Cretaceous-aged enhanced oil recovery near the Saskatchewan border (**Figure R5.6**). Sour development within the carbonate-dominated strata (**Figure R5.7**) was focused on the oil-rich Devonian and Mississippian strata of the central and eastern plains.

As of December 31, 2012, sour gas accounted for about 22 per cent (201 10⁹ m³) of the province's total remaining established gas reserves and about 18 per cent of raw natural gas production in 2012. The average H₂S concentration of initial producible reserves of sour gas in the province at year-end 2012 was 8.3 per cent.

The distribution of reserves of sweet and sour gas provided in **Table R5.7** shows that 123 10^9 m³, or about 61 per cent, of remaining sour gas reserves are in nonassociated pools. Since 2002, sour gas has consistently accounted for about 20 per cent of the total remaining marketable reserves. The distribution of sour gas reserves by H₂S content, shown in **Table R5.8**, indicates that 14 per cent (29 10^9 m³) of remaining sour gas contains H₂S concentrations greater than 10 per cent, while 59 per cent (119 10^9 m³) contains concentrations less than 2 per cent.

	Ма	rketable gas (10° m	Percentage		
Type of gas	Initial established reserves	Cumulative production	Remaining established reserves	Initial established reserves	Remaining established reserves
Sweet					
Associated and solution	849	671	178	16	19
Nonassociated	2 723	2 186	537	51	59
Subtotal	3 572	2 857	715	67	78
Sour					
Associated and solution	557	479	78	10	9
Nonassociated	1 212	1 089	123	23	13
Subtotal	1 769	1 568	201	33	22
Total	5 341	4 425	916ª	100	100
	(190) ^b	(157) [⊳]	(32.5) ^b		

Table R5.7	Distribution of sweet and sour gas reserves, 2012
------------	---

^a Reserves estimated at field plants.

 $^{\rm b}\,$ Imperial equivalent in Tcf at 14.65 pounds per square inch absolute and 60 $^{\circ}\text{F}.$

Table R5.8	Distribution of sour	gas reserves by	y H ₂ S content, 2012
------------	----------------------	-----------------	----------------------------------

Initial established reserves (10º m³)		Remaining established reserves (10 ⁹ m ³)			
Associated and solution	Nonassociated	Associated and solution	Nonassociated	Total	%
422	441	63	56	119	59
92	409	10	43	53	26
32	209	4	12	16	8
11	49	1	5	6	3
0	104	0	7	7	3
557	1 212	78	123	201	100
31	69	39	61		
	reserves Associated and solution 422 92 32 32 11 0 557	reserves (10° m³) Associated and solution Nonassociated 422 441 92 409 32 209 11 49 0 104 557 1 212	reserves (10° m³)RemAssociated and solutionNonassociated and solutionAssociated and solution42244163924091032209411491010405571 21278	reserves (10° m³)Remaining established restAssociated and solutionNonassociatedAssociated and solutionNonassociated4224416356924091043322094121149150104075571 21278123	Remaining established reserves (10° m³)Associated and solutionNonassociated and solutionNonassociated NonassociatedTotal422441635611992409104353322094121611491560104077557121278123201

5.1.3.5 Reserves Methodology for Conventional Natural Gas

A detailed pool-by-pool list of reservoir parameters and reserves data for all conventional oil and gas pools is on CD (see **Appendix C**) and is available from ERCB Information Services.

The process of determining reserves takes into consideration geological, engineering, and economic factors. Though initial estimates contain a level of uncertainty, this level of uncertainty decreases over the life of the pool as more information becomes available and actual production is observed and analyzed. The initial reserves estimates are normally based on volumetric calculation, which uses bulk rock volume (based on isopach maps derived from geological interpretation of well log data) and initial reservoir parameters to estimate gas in place at reservoir conditions. Drainage areas for single-well pools range from 200 hectares (ha), for gas wells producing from regional sands with good permeability, to 32 ha or less. The smaller areas are assigned to wells producing from low-permeability formations (less than 1 millidarcy) or from geological structures limited in areal extent.

Converting gas volume in place to specified standard conditions at the surface requires knowledge of reservoir pressure and temperature and the analysis of reservoir gas. A recovery factor is applied to the in-place volume to yield recoverable reserves, the volume that will actually be produced to the surface. Given the low viscosity and high mobility of natural gas, recoveries typically range from 70 to 90 per cent. However, low-permeability gas reservoirs and reservoirs with underlying water may only recover 50 per cent or less of the in-place volume.

Once a pool has been on production for some time, material balance analysis involving the decline in pool pressure can be used as an alternative to volumetric estimation to determine in-place resources. Material balance is most accurate when applied to high-permeability, nonassociated, and noncommingled gas pools. Analysis of production decline data is a primary method for determining recoverable reserves, given that most of the larger pools in the province have been in decline for many years. When combined with an estimate of the in-place resource, it also provides a practical, realistic estimate of the pool's recovery factor.

The procedures described above generate an estimate of initial established reserves of raw gas. The raw natural gas reserves must be converted to a marketable volume (i.e., the volume that meets pipeline specifications) by applying a surface loss or shrinkage factor. Based on the gas analysis for each pool, a surface loss is estimated using an algorithm that reflects expected recovery of liquids (ethane, propane, butanes, and pentanes plus) at field plants. Typically, 5 per cent is added to account for loss due to lease fuel (estimated at 4 per cent) and flaring. Surface losses range from 3 per cent for pools containing sweet dry gas to over 30 per cent for pools with raw gas that contains high concentrations of H_2S and gas liquids. Therefore, marketable gas reserves of individual pools in the ERCB's gas reserves database reflect expected marketable reserves after processing at field plants. The pool reserves numbers published by the ERCB represent estimates for in-place resources, recoverable reserves, and associated recovery factors based on the most reasonable interpretation of available information from volumetric estimates, production decline analysis, and material balance analysis.

Additional liquids contained in the gas stream leaving the field plants are extracted downstream at straddle plants. Exceptions to this are the gas shipped to Chicago through the Alliance Pipeline and some of the dry southeastern Alberta gas. As removal of these liquids cannot be traced back to individual pools, a gross adjustment for the liquids is made to arrive at the estimate for remaining reserves of marketable gas for the province. These provincial reserves, therefore, represent the volume and average heat content of gas after removal of liquids from both field and straddle plants.

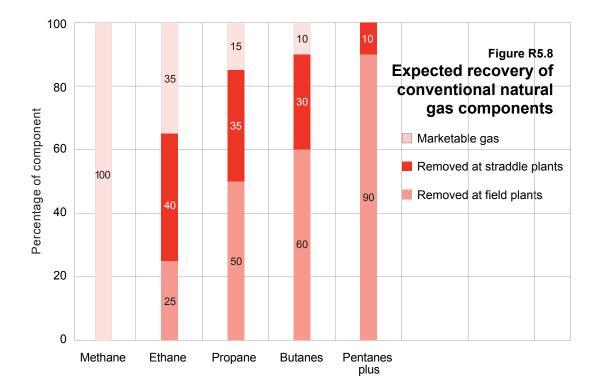

It is expected that about 28.9 10^9 m³ of liquids-rich gas will be extracted at straddle plants, thereby reducing the remaining established reserves of marketable gas (estimated at the field plant gate) from 915.7 10^9 m³ to 886.7 10^9 m³ and the total thermal energy content from 35.8 to 33.1 exajoules (10^9 joules).

Figure R5.8 shows the average percentage of remaining established reserves of each hydrocarbon component expected to be extracted at field and straddle plants. For example, of the total ethane content in raw natural gas, about 25 per cent is expected to be removed at field plants and an additional 40 per cent at straddle plants. Therefore, the ERCB estimates the reserves of liquid ethane that will be extracted based on 65 per cent of the total raw ethane gas reserves. The remaining 35 per cent of the ethane is left in the marketable gas and sold for its heating value. This ethane represents a potential source for future ethane supply.

Reserves of NGLs are discussed in more detail in Section 6.

5.1.3.6 Multifield Pools

Pools that extend over more than one field are classified as multifield pools and are listed in **Appendix B**, **Table B.5**. For each multifield pool, the individual remaining established reserves assigned to each field and the total remaining established reserves for the multifield pool are shown.

5.1.4 Established Reserves of CBM

CBM is the methane gas found in coal, both as adsorbed gas and as free gas. Unlike conventional gas, which occurs as discrete accumulations, or pools, CBM most often occurs in interconnected coal seams within defined stratigraphic zones as laterally continuous accumulations or deposits.

CBM may contain small amounts of carbon dioxide and nitrogen (usually less than 5 per cent). H_2S is not normally associated with CBM production as the coal adsorption coefficient for H_2S is far greater than for methane. The heating value of CBM is generally about 37 megajoules per cubic metre.

5.1.4.1 CBM Potential by Geological Strata

Based on thousands of coal holes and oil and gas wells, coal is known to underlie most of central and southern Alberta, one of the largest geographical extents of continuous coal in North America. Coal seams occur as layers or beds within several Cretaceous coal zones. While individual coal seams can be laterally discontinuous, coal zones can be correlated very well over regional distances. All coal seams contain CBM to some extent, and each seam is potentially capable of producing a quantity of CBM.

The ERCB recognizes CBM reserves in the following horizons in Alberta:

- **Coals of the Horseshoe Canyon Formation and Belly River Group** Horseshoe Canyon coals generally have low gas content and low water volume, with production referred to as "dry CBM." The first commercial production of CBM in Alberta was from these coals, and they constitute the majority of CBM reserves booked. Reserves from the Taber or MacKay coal zones of the Belly River Group have not yet been established.
- **Coals of the Mannville Group** Mannville coals generally have high gas content and high volume of saline water, requiring extensive pumping and water disposal. The initial reserves for areas other than the Corbett area within the Mannville Group have been set at cumulative production.

The Ardley coals of the Scollard Formation and the Kootenay coals of the Mist Mountain Formation also show potential for production, but at this time no CBM reserves have been calculated for these coals.

An individual CBM zone is defined as all coal seams within a formation separated by less than 30 m of noncoal-bearing strata or separated by a previously defined conventional gas pool. Several individual producing coal seams in one CBM zone are considered to be one CBM pool for regulatory and administrative purposes. For administrative purposes, previous pools limited by field boundaries have been converted to multifield CBM pools. However, as multifield pools are still problematic in grouping CBM resource and reserves estimates, the ERCB groups CBM volumes into deposit-based play areas.

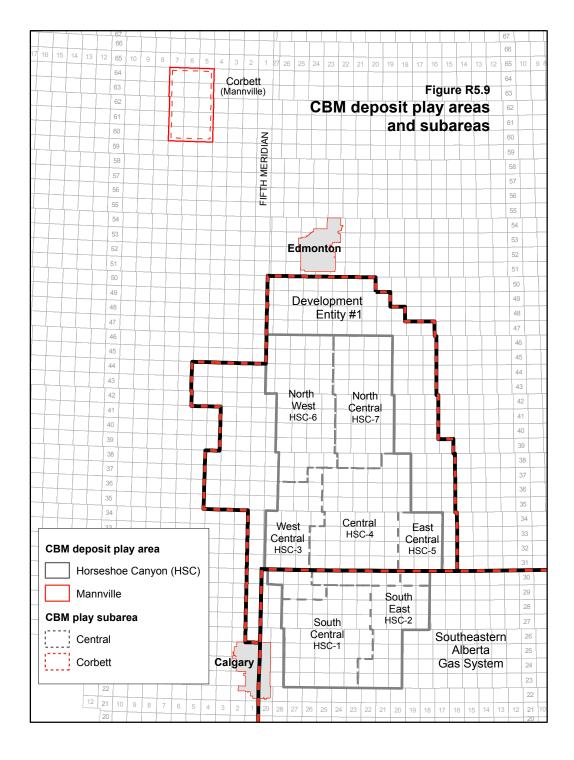
5.1.4.2 CBM Deposits, Play Areas, and Play Subareas

Although CBM is regulated and administered as if it existed in pools, CBM accumulations exist more as deposits. The ERCB assesses CBM deposits for reserve determination in a manner similar to the way it assesses oil sands deposits. CBM deposits are stratigraphic intervals that extend over a large geographic area and may include one or more CBM zones. Unlike oil sands deposits, however, the ERCB has yet to formally define CBM deposits (e.g., through Board orders) because it is still monitoring development activities. Currently, CBM deposits are informally based on formations, with the two main CBM deposits being the Horseshoe Canyon and the Mannville. Within each of these deposits, development activities have until now been concentrated mainly in a single smaller play area.

While Mannville activity is clustered almost exclusively in the Corbett area, the more widespread Horseshoe Canyon play occurs over a large area in central Alberta between Calgary and Edmonton. Currently, the Horseshoe Canyon play area is within the ERCB-designated DE No. 1 and the Southeastern Alberta Gas System. The current play areas for the Horseshoe Canyon and Mannville deposits are shown in **Figure R5.9**.

Although coal zones are regionally extensive, the values of reservoir parameters used for reserves estimates are determined locally. As a result, for reserves estimation and reporting purposes, the large central Alberta play area of the Horseshoe Canyon deposit is divided into subareas based on reservoir and production profile differences defined by data from control wells within the deposit. The location of the Horseshoe Canyon play subareas is also shown on **Figure R5.9**.

5.1.4.3 CBM Reserves Determination Method


The ERCB uses three-dimensional block models to estimate in-place CBM resources for each play area or subarea. Desorption data are used on a zonal basis by applying gas content trends from core to all coals in each zone to estimate in-place CBM resources. Desorption values from drill cuttings are used to validate the continuity of the zonal trends from core.

Current reserves estimates are determined by applying an average recovery factor based on analysis of control well data for each play subarea. These recovery factors are shown for each subarea in **Table R5.9**. The method of determining reserves depends on flowmeter values and changes in reservoir pressure as determined by qualitatively comparing annual measurements in each CBM zone. If the data or production reporting is missing, then the result is assumed to be zero, which becomes the recovery factor. Future analysis is expected to improve estimates of recovery factors. CBM data are available on two systems from the ERCB: summarized net pay data on the Integrated Geological Database and individual coal seam thickness picks on the Coal Hole Database.

5.1.4.4 Detail of CBM Reserves and Well Performance

CBM reserve values remain unchanged from 2011. The ERCB is currently reviewing the reserves determination process for CBM in Alberta.

Horseshoe Canyon coals, which are mainly gas charged, with little or no pumping of water required, remain the main focus of industry and currently have the highest established reserves (see **Table R5.9**). New data have supported the inclusion of additional areas within many of the Horseshoe Canyon CBM play subareas. In subarea 1, coals are deeper and have higher gas content, which results in this area having the largest initial established reserves of CBM in the Horseshoe Canyon play.

	obin gao in place and received by acpoint play area, 2012							
Deposit and play subareas	Average net coal thickness (m)	Coal reservoir volume (10º m³)	Estimated gas content (m³ gas/ m³ coal)	Initial gas in place (10° m³)	Average recovery factor (%)	Initial established reserves (10 ⁹ m ³)	Cumulative production (10 ⁹ m ³)	Remaining established reserves (10 ⁹ m ³)
Horseshoe Canyonª								
HSC-1	10.1	35.37	2.95	104.38	27	28.56	6.83	21.73
HSC-2	4.3	9.04	1.06	9.61	25	2.37	0.52	1.85
HSC-3	5.8	13.91	2.41	33.56	30	10.19	4.65	5.54
HSC-4	6.4	28.39	1.72	48.84	34	16.47	12.76	3.71
HSC-5	3.0	3.93	1.11	4.37	26	1.13	0.75	0.38
HSC-6	3.5	8.67	1.57	13.58	30	4.14	3.55	0.59
HSC-7	4.4	14.74	1.30	19.19	32	8.31	7.57	0.74
Undefined		-	-	-	-	1.30	1.30	0.00
Subtotal	5.4°	114.05	2.05°	233.53	31 °	72.47	37.93	34.54
Mannville								
Corbett	4.9	6.97	9.73	67.86	42	28.18	5.98	22.20
Undefined	-	-	-	-	-	0.63	0.63	0.00
Total		121.02		301.39	33 °	101.28	44.54	56.74

Table R5.9 CBM gas in place and reserves by deposit play area, 2012

^a Includes Upper Belly River CBM.

^b Most of the undefined areas are for tests in the Mannville coals, but include a few Horseshoe Canyon, Ardley, and Kootenay wells with minor production and many Belly River recent recompletions with incomplete reporting.

° Weighted average.

The row labelled "undefined" in **Table R5.9** includes noncommercial production from these areas, but reserves have not been booked pending commercial production.

5.1.4.5 Commingling of CBM with Conventional Natural Gas

The first production of CBM in Alberta was attempted in the 1970s, but the first CBM pool was not defined by the ERCB until 1995. Significant development with commercial production commenced in 2002. The actual CBM production to date continues to be uncertain because of the difficulty differentiating CBM from conventional gas production where commingled production occurs.

Gas commingling is the unsegregated production of gas from more than one pool in a wellbore. For CBM, this includes commingling of two or more CBM zones, as well as the commingling of one or more CBM zones with one or more conventional gas pools.

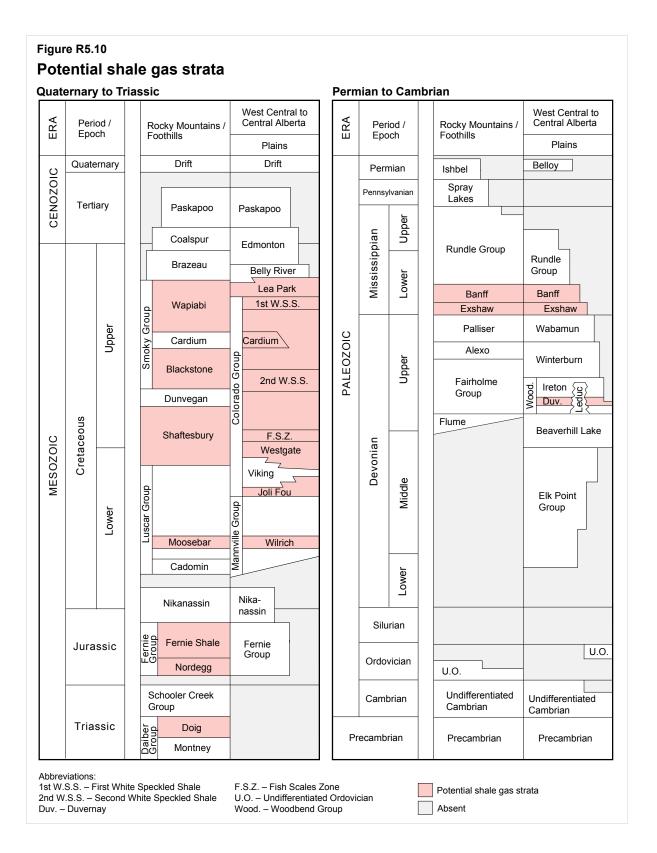
As the Horseshoe Canyon and Belly River formations generally contain "dry CBM" with little or no pumping of water required, the commingling of CBM and other conventional gas pools is common. Because many of the sandstone gas reservoirs in these strata may be marginally economic or uneconomic if produced separately, commingling with CBM can be beneficial from a resource conservation perspective. In some circumstances,

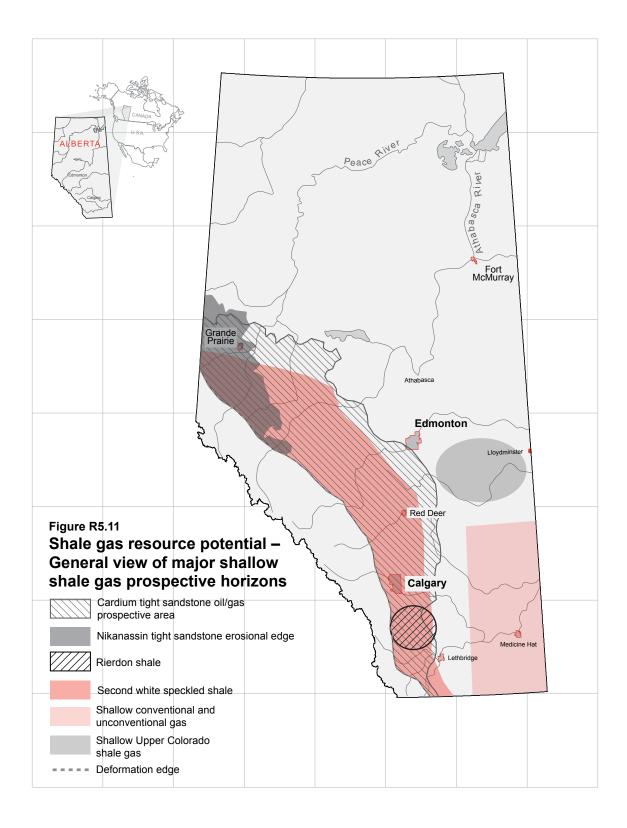
commingling can have the additional benefit of minimizing surface impact by reducing the number of wells needed to extract the same resource.

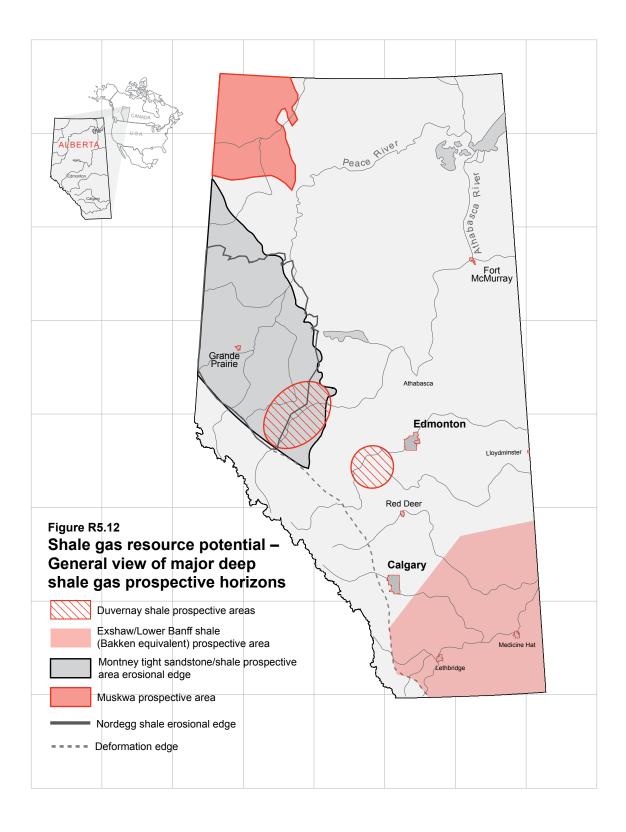
CBM hybrid wells lack segregated reservoir data from commingled zones, making reserve estimation more difficult. Many hybrid wells report only CBM production, even though analysis of the wells indicates that there is unsegregated production of both CBM and conventional gas. Recompleted wells with new CBM production may not report to a separate production occurrence. To address these data constraints, the following was done for wells with commingled production:

- Wells with completions that were determined to be only in coal were assigned as CBM-only production.
- The CBM production contribution from hybrid wells was interpolated from more than 1300 CBM control wells and numerous other wells with confirmed CBM-only production. The volume of CBM production was then subtracted from the total volume to give the conventional gas production.
- CBM production from conventional wells recompleted for CBM and not reported separately was included. There is an administrative process in place to correct for the CBM production in these cases.

5.1.5 Shale Gas Resources


Shales are the traditional source rocks for conventional hydrocarbon accumulations, as well as a seal for conventional reservoirs. More recently, organic-rich shales have become a target for production of gas, natural gas liquids, and oil.


Typically, these fine-grained rocks have extremely low matrix permeability, and stimulation is required to produce fluids from the rock. Shale gas or shale oil is not restricted to shale since claystones, mudstones, siltstones, fine-grained sandstones, and carbonates can also be found within potential shale gas strata. The ERCB's recent study on shale- and siltstone-hosted hydrocarbon resources is discussed in **Section 2.2.1**.


More than 15 shale formations exhibit potential for shale gas, natural gas liquids, or oil. The generalized stratigraphic chart of formations shown in **Figure R5.10** details the formations (indicated with red shading) that have organic matter that could potentially produce gas or oil. Not all of these formations are source rocks (i.e., are organic rich); some contain small amounts of organic matter and may be more like low-permeability strata or aquitards than organic-rich shale.

Exploration for shale gas, natural gas liquids, and oil is taking place in many of the formations highlighted in **Figure R5.10**. Receiving most of the attention are the Duvernay (Woodbend Group), Banff/Exshaw, and Nordegg (Fernie Group) formations as these strata are rich in natural gas liquids and oil. The depth from the surface to the shale formations increases westwards in Alberta. Typically, the deeper formations have a higher formation pressure, which is favourable for shale gas exploration.

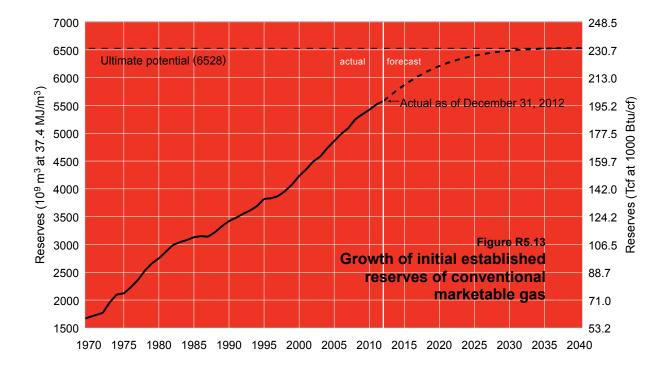
The geographic distribution of significant shale gas horizons in the upper half of the WCSB is shown in **Figure R5.11**. The lower half of the WCSB is shown in **Figure R5.12**.

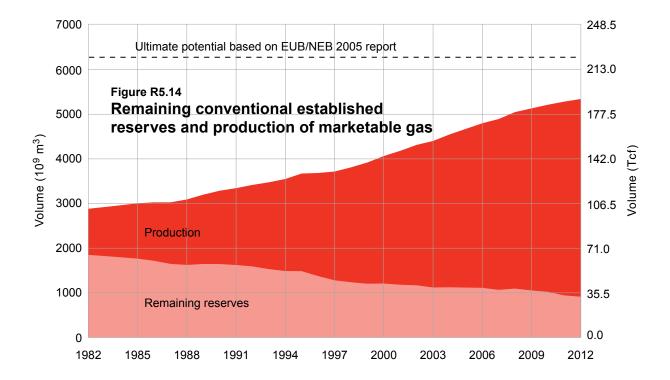
5.1.6 Ultimate Potential of Conventional Natural Gas

The Alberta Energy and Utilities Board (EUB) and the National Energy Board (NEB) jointly released *Report* 2005-A: Alberta's Ultimate Potential for Conventional Natural Gas (EUB/NEB 2005 Report), an updated estimate of the ultimate potential for conventional natural gas. The EUB's successor, the ERCB, has adopted the medium case, representing an ultimate potential of 6276 10⁹ m³ "as is" volume (223 Tcf) or 6528 10⁹ m³ (232 Tcf) at the equivalent standard heating value of 37.4 MJ/m³. This estimate does not include unconventional gas, such as CBM.

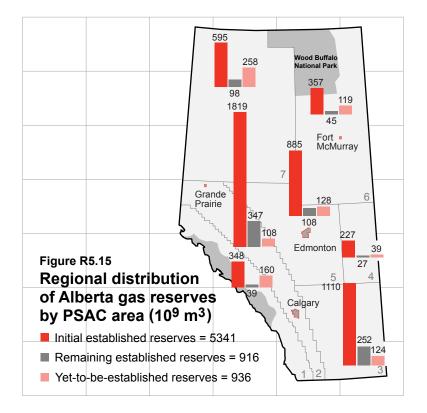
Figure R5.13 shows the historical and forecast growth in initial established reserves of marketable gas. Historical growth up to 2012 equalled 5583 10⁹ m³. **Figure R5.14** plots production and remaining established reserves of marketable gas compared with the estimate of ultimate potential.

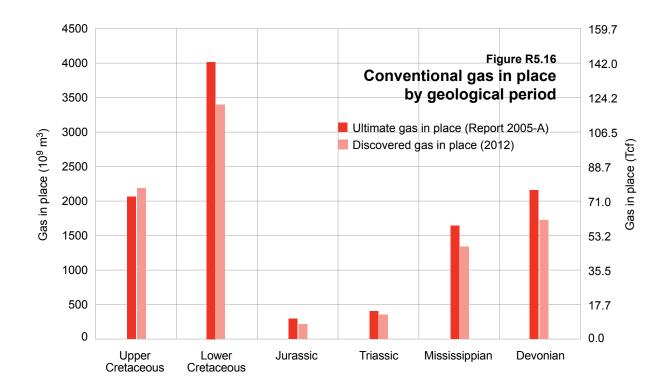
Table R5.10 on page 5-26 provides details about the ultimate potential of marketable gas, with all values shown both "as is" and converted to the equivalent standard heating value of 37.4 MJ/m³. It shows that initial established marketable reserves of 5341 10⁹ m³, or 85 per cent of the ultimate potential of 6276 10⁹ m³ ("as is" volumes), have been discovered as of year-end 2012. This leaves 935 10⁹ m³, or 15 per cent, as yet-to-be-discovered reserves. Cumulative production of 4425 10⁹ m³ at year-end 2012 represents 71 per cent of the ultimate potential, leaving 1851 10⁹ m³, or 29 per cent, available for future use.


The regional distribution of initial established reserves, remaining established reserves, and yet-to-be-established reserves is shown by PSAC area in **Figure R5.15**. It shows that the PSAC Area 2 (Foothills Front) contains 38 per cent of the remaining established reserves and 12 per cent of the yet-to-be-established reserves. Although most gas wells have been drilled in the southern plains (PSAC Areas 3, 4, and 5), **Figure R5.15** shows that, based on the EUB/NEB 2005 report, Alberta conventional natural gas supplies will continue to depend on significant new discoveries in all PSAC Areas.


Figure R5.16 shows by geological period the discovered and ultimate potential gas in place for year-end 2005. It illustrates that 57 per cent of the ultimate potential gas in place is in the Upper and Lower Cretaceous. Discovered gas in place represents the known value as of December 2012. Current methods of evaluating gas in place have changed from discrete pooling of wells in 2005 to more of a block-type model in areas such as the development entities and southeastern Alberta. This has resulted in the current discovered gas in place being greater than the 2005 forecasted ultimate gas in place for the Upper Cretaceous.

5.1.7 Ultimate CBM Gas in Place


The Alberta Geological Survey (AGS), in *Earth Sciences Report 2003-03*, estimated that there are 14 trillion (10¹²) m³ (500 Tcf) of gas in place within all of the coal in Alberta. This estimate is accepted as the initial determination of Alberta's ultimate CBM gas in place (see **Table R5.11** on page 5-26). However, due to the early stage of CBM development and the resulting uncertainty of recovery factors, the recoverable portion—the ultimate potential—has yet to be determined.


Although not a type of natural gas, there is potential in Alberta for the production of synthetic gas from coal and other sources. Synthetic gas from coal is discussed in **Section 8**.

5-24

Table R5.10 Remaining ultimate potential of marketable conventional gas, 2012 (10⁹ m³)

v 1		
	Gross heating	value
	As is (38.9 MJ/m³)	at 37.4 MJ/m ³
Ultimate potential	6 276	6 528
Minus initial established reserves	-5 341	-5 583
Yet-to-be-established reserves	935	945
Initial established reserves	5 341	5 583
Minus cumulative production	-4 425	-4 626
Remaining established reserves	916	957
Yet-to-be-established reserves	935	945
Plus remaining established reserves	+916	+957
Remaining ultimate potential	1 851	1 902

Table R5.11 Ultimate CBM gas in place

Area	10 ¹² m ³	Tcf
Upper Cretaceous/Tertiary – Plains	4.16	148
Mannville coals – Plains	9.06	321
Foothills/Mountains	0.88	31
Total	14.10	500

Source: EUB/AGS Earth Sciences Report 2003-03: Production Potential of Coalbed Methane Resources in Alberta. 'Tcf = trillion cubic feet.

5.2 Supply of and Demand for Natural Gas

In projecting marketable natural gas production, the ERCB considers three components: expected production from existing connections, expected production from new connections, and gas production from oil wells. The ERCB also takes into account its estimates of the remaining established and yet-to-be established reserves of natural gas in the province. The ERCB projects conventional gas production from oil wells and gas connections separately from CBM connections. The forecasts are combined and referred to as total gas production in Alberta.

The ERCB annually reviews the projected demand for Alberta natural gas. The focus of these reviews is on intra-Alberta natural gas use, and a detailed analysis is undertaken of many factors, such as population growth, industrial activity, alternative energy sources, and other factors, that influence gas consumption in the province.

5.2.1 Marketable Natural Gas Production – 2012

With weak drilling activity for natural gas for the fourth year in a row, Alberta's production continued to slide. In 2012, total marketable natural gas production in Alberta, including unconventional production, declined by 5.6 per cent to 287.7 10⁶ m³/d from the revised 2011 volume of 304.7 10⁶ m³/d. This decline in production is more than the 4.6 per cent production decrease reported from 2010 to 2011. In 2012, natural gas from conventional gas and oil connections, at 265.2 10⁶ m³/d (standardized to 37.4 MJ/m³), represented 92.2 per cent of production. The remaining 7.8 per cent of gas supply came from CBM and shale gas connections at 22.3 10^6 m³/d and 0.2 10^6 m³/d, respectively.

Total production from identified CBM and CBM hybrid connections decreased 6.7 per cent in 2012 to 22.3 10⁶ m³/d from 23.9 10⁶ m³/d in 2011. Gas production from connections completed in the Horseshoe Canyon play area was 20.2 10⁶ m³/d, representing 91 per cent of total CBM production. Gas production from the Mannville Group was 2.0 10⁶ m³/d. Total production volume includes production from connections outside the defined CBM subareas.

Marketable natural gas production volumes for conventional gas are calculated based on production data from the Supply and Disposition of Marketable Gas section of *ST3: Alberta Energy Resource Industries Monthly Statistics*, as shown in **Table S5.1**. Gas production from CBM and shale gas connections is determined separately.

Major factors affecting Alberta natural gas production are basin maturity, drilling and connection activity, the location of Alberta's reserves, well production characteristics, gas liquids content, market demand, and natural gas prices and their volatility.

Three related themes were instrumental in shaping Alberta's natural gas industry and activity levels over the past year. First, North American gas production has been increasing as a result of shale gas production. In 2012, U.S. marketed gas production from the lower 48 states reached 1931 10⁶ m³/d, up by 5.1 per cent from 1837 10⁶ m³/d

Conventional marketable gas production	2012
Total raw gas production including storage withdrawals	125 966
Minus production from CBM and hybrid connections	-8 147
Minus production from shale gas connections	-78
Total conventional raw gas production	117 741
Minus storage withdrawals	-3 422
Net raw gas production	114 319
Minus total injection	-5 712
Net raw gas production	108 607
Minus processing shrinkage—raw	-6 749
Minus flared—raw	-801
Minus vented—raw	-472
Minus fuel—raw	-10 183
Plus storage injections	2 936
Conventional marketable gas production at "as is" conditions	93 338
Conventional marketable gas production at 37.4 MJ/m ³	97 072
Daily rate of conventional marketable gas at 37.4 MJ/m ³	(265.2 10 ⁶ m³/d)

 Table S5.1
 Conventional marketable natural gas volumes (10⁶ m³)

in 2011. Consequently, in 2012, the AECO-C³ daily price averaged \$2.27/GJ, down 34.8 per cent from the 2011 daily average of \$3.48/GJ. Alberta's relatively high drilling and development costs led to reduced investment in Alberta's conventional gas development, which resulted in a year-over-year reduction in both gas drilling activity and production.

The second factor shaping Alberta's natural gas industry in 2012 was the increase in well productivity. To combat the low price of natural gas, producers in Alberta are drilling more horizontal gas wells, instead of vertical wells, and using multistage fracturing technology, which substantially improves well productivity when used in combination with horizontal wells.

The third factor affecting natural gas activity in Alberta is the competition for investment dollars among commodities, and in the current price environment, investment has been flowing to the crude oil and oil sands industry, or has focused on liquids-rich gas. The resurgence in crude oil drilling activity is a result of high crude oil prices and the application of multistage fracturing technology in horizontal wells.

Natural gas producers in Alberta and elsewhere are developing liquids-rich gas plays as a way to offset the low natural gas prices. Propane, butanes, and pentanes plus are by-products of natural gas and are priced relative to crude oil. Natural gas producers with a steady stream of liquids-rich output can therefore continue to drill new wells economically.

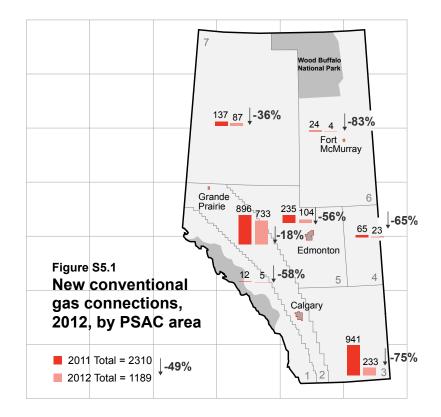
5.2.2 Natural Gas Connections – 2012

Gas-well connections include newly drilled wells placed on production and recompletions into new zones of existing wells. This section identifies recompletions as those connections that went on production at least one year after the finished drilling date.

5.2.2.1 Conventional Natural Gas Connections

The number of gas well connections dropped significantly in 2012 and has not been this low since 1992. **Figure S5.1** shows the number of new conventional gas connections in Alberta in the last two years by PSAC area. In 2012, 1189 new conventional gas connections were placed on production in the province, a decrease of 48.5 per cent from 2011. This is the sixth straight year of reductions in new conventional gas connections. The continuing low natural gas price, as well as natural gas producers' focus on high-capital horizontal wells with the application of multistage fracturing technology, is reflected in this decrease.

New conventional gas connection activity for 2012 and 2011 is shown in **Table S5.2**. The table provides information on the number of vertical or directional wells versus horizontal wells drilled in the province. The table also breaks down the number of new gas connections placed on production versus connections recompleted in existing wellbores and placed on production. In 2012, roughly 17 per cent of gas connections were recompletions into existing wellbores.


³ The Alberta Energy Company storage facility (AECO-C) hub is the main pricing point for Alberta natural gas and represents the major pricing point for Canadian gas.

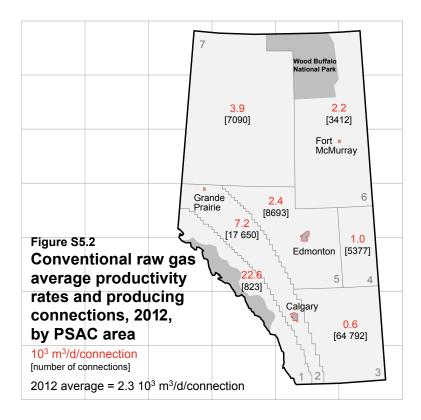
	New conne	ctions	Recompletions		Total	
Well type	2012	2011	2012	2011	2012	2011
Vertical/directional wells	366	1 229	188	504	554	1 733
Horizontal wells	622	564	13	13	635	577
Total	988	1 793	201	517	1 189	2 310

Table S5.2	Conventional gas	connections by	/ well type
------------	------------------	----------------	-------------

The number of horizontal gas wells drilled and connected in the province is increasing as a percentage of the total. In 2012, about 53 per cent of new gas connections were horizontal wells, compared with 25 per cent in 2011 based on the revised well-connection counts.

Despite low well production rates, conventional gas activity has traditionally been focused on the shallow gas plays in southeastern Alberta, accounting for 50 per cent of activity, because of the lower cost of drilling, existing infrastructure, and short tie-in times. However, with very low natural gas prices, the trend is changing significantly. The share of new connections in southeastern Alberta (an area containing mostly dry gas) dropped from 41 per cent in 2011 to 20 per cent in 2012, after peaking in 2004 at 56 per cent. Meanwhile, the share in PSAC Area 2 (an area of more liquids-rich gas) increased from 39 per cent in 2011 to 62 per cent in 2012, up from 12 per cent in 2004.

Figure S5.2 illustrates the number of producing conventional gas connections and the average daily connection productivity by PSAC area in 2012. These rates are calculated using the annual gas production volume and the number of producing gas connections for each PSAC area.


5.2.2.2 Coalbed Methane Connections

The ERCB identifies CBM and CBM hybrid connections using licensing data, production reporting, and detailed geological evaluations. These designations are re-evaluated annually and adjusted if required based on new information. Historical numbers are also updated annually as a result. All connections and volumes in this section are based on CBM connection designations as of December 31, 2012.

In 2012, there were 433 new connections for CBM and CBM hybrid production: all of them in the Horseshoe Canyon play area. Overall, new CBM and CBM hybrid connections decreased by 58 per cent in 2012 over 2011.

New CBM and CBM hybrid connection activity for 2012 and 2011 is shown in **Table S5.3**. The table shows the number of CBM and CBM hybrid connections in vertical or directional wells and horizontal wells within the ERCB-defined CBM play areas. Most CBM and CBM hybrid connections in the Horseshoe Canyon play area are in vertically drilled wells.

The table also breaks down the number of new CBM and CBM hybrid connections placed on production versus connections recompleted in existing wellbores and placed on production. In 2012, about 22 per cent of the new connections were recompletions into existing vertical wells in the Horseshoe Canyon play area.

	New connect	ions	Recompletion	ons	Total	
CBM play subarea	2012	2011	2012	2011	2012	2011
Vertical/directional wells						
Horseshoe Canyon	262	716	75	237	337	953
Mannville Corbett	0	4	0	0	0	4
Undefined ^a	75	10	21	48	96	58
Subtotal	337	730	96	285	433	1 015
Horizontal wells						
Horseshoe Canyon	0	3	0	1	0	4
Mannville Corbett	0	4	0	0	0	4
Undefined ^a	0	0	0	0	0	0
Subtotal	0	7	0	1	0	8
Total	337	737	96	286	433	1 023

Table S5.3 CBM and CBM hybrid connections by well type and CBM play area

^a Includes connections outside defined play subarea boundaries.

5.2.2.3 Shale Gas Connections

The ERCB identifies shale gas connections using the designation submitted by the operator to PETRINEX (formerly known as the Petroleum Registry of Alberta). These designations are evaluated and adjusted if required based on new information, resulting in revisions to historical annual numbers. All shale gas connections and volumes in this section are based on current connection designations as of December 31, 2012.

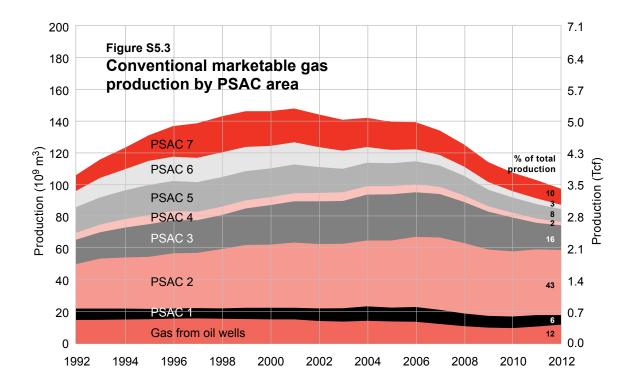
The ERCB currently recognizes 95 producing shale and commingled shale gas connections in 2012. Horizontal gas wells drilled in low permeability gas-bearing formations in northwest Alberta are reported as conventional gas, and reserves associated with this development are included in the conventional gas category in this report; however, as the play extends into British Columbia, it becomes generally shalier and is defined as shale gas.

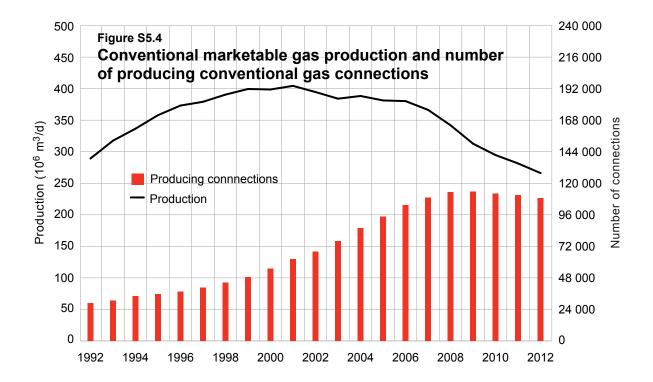
Most producing shale gas connections in Alberta are shallow vertical wells, although the trend may have started to change in 2011. **Table S5.4** identifies the type of shale connection in 2012 and 2011. About 95 per cent of the designated shale gas connections have been made in the last six years, with most in 2008.

The average initial daily productivity rate for wells connected in 2011 was 6.5 10^3 m³/d, significantly higher than the 2.3 10^3 m³/d for wells connected in 2010. The figure for 2012 is not available as initial productivity rate is calculated using the first full calendar year following the connection date of a well.

	New Connecti	ons	Recompletio	ons	Total	
Well type	2012	2011	2012	2011	2012	2011
Vertical wells	0	0	1	1	1	1
Horizontal wells	10	20	0	0	10	20
Total	10	20	1	1	11	21

 Table S5.4
 Shale gas connections by well type


5.2.3 Production Trends


5.2.3.1 Conventional Gas

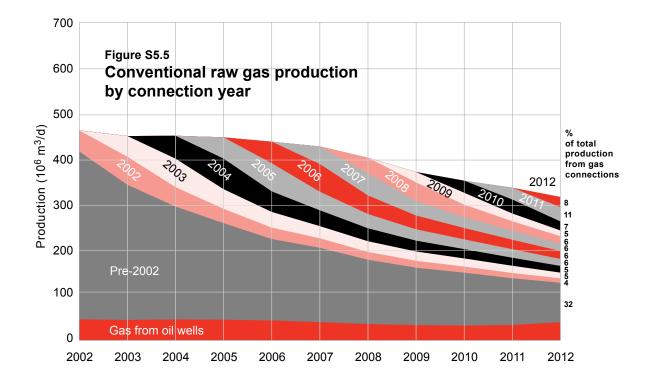
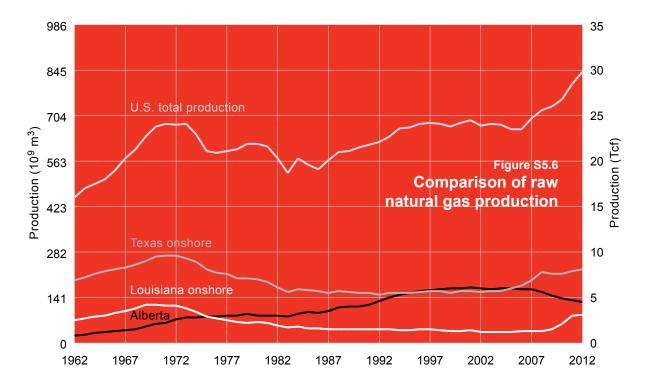
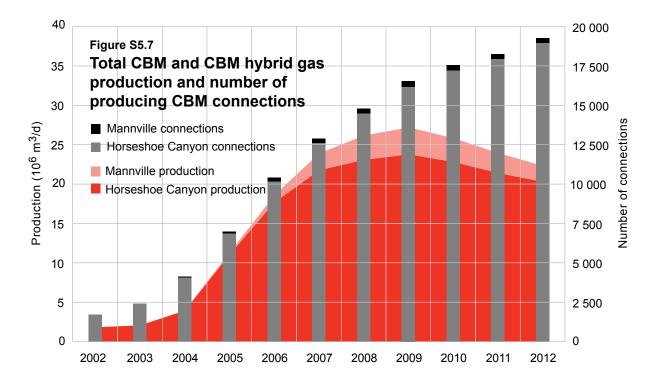

Figure S5.3 illustrates historical conventional marketable gas production, including gas from oil wells, by PSAC area. Production in all areas of the province except for PSAC Area 2 (Foothills Front) decreased from 2011 to 2012. The top three producing areas in the province—PSAC Area 2, PSAC Area 3 (Southeastern Alberta) and PSAC 7 (Northwestern Alberta)—are responsible for 42 per cent, 16 per cent, and 10 per cent of gas production in 2012, respectively.

Figure S5.4 shows that from 1992 to 2009, the total number of producing conventional gas connections increased, while gas production decreased since reaching its peak in 2001. The numbers of new conventional gas connections each year had not been adequate to offset production declines in existing connections. The year 2010 was the first year in recent history in which the number of conventional gas well connections dropped over the previous year, and this trend continued in 2011 and 2012. In 2012, conventional gas well connections continued to decline to 108 550, after reaching a high of 113 450 connections in 2009.

Historical conventional raw gas production by connection year is presented in **Figure S5.5**. Natural gas production from oil wells has remained relatively stable, as shown by the band on the bottom of the chart. Each band above the gas production from oil wells represents production from new conventional gas connections by year. The percentages on the right-hand side of the figure represent the area's shares of total production from conventional gas connections in 2012. About 8 per cent of conventional gas production in 2012 came from the connections in 2012. Connections before 2002 contributed 31 per cent of gas production in 2012.


The percentage of sour gas relative to total gas production decreased from 31 per cent in 2000 to 18 per cent in 2012 because of a decline in production from the large sour gas pools in the province.


Figure S5.6 compares total raw natural gas production in Alberta with both Texas and Louisiana onshore production and total U.S. gas production over the past 50 years. Both Texas and Louisiana show peak gas production in the late 1960s and early 1970s, while Alberta's production has a noticeably flatter production profile, peaking in 2001. For both Texas and Louisiana, gas production declined somewhat steeply after reaching peak production, but after a decade of decline, production rates stabilized. Only recently have they seen an increase again in gas production because of growth in shale gas production from the Barnett, Haynesville, and Eagle Ford shale plays.

The long-term outlook for North American gas supply has changed with the recent growth in supply from shale gas production. With the success of the Barnett and Eagle Ford shales in Texas, and the expected potential of other shale gas plays in the United States—particularly the Marcellus, Haynesville, Woodford, and Fayetteville shales, as well as the Horn River and Montney shale plays in northeastern British Columbia—shale gas production continues to grow and has become a significant source of natural gas production in North America. The U.S. Energy Information Administration expects that shale gas production in the United States will increase from 8.1 Tcf (228.2 10⁹ m³) in 2012 (34 per cent of total U.S. dry gas production) to 15.3 Tcf (431.1 10⁹ m³) in 2035 (49 per cent of total U.S. dry gas production).

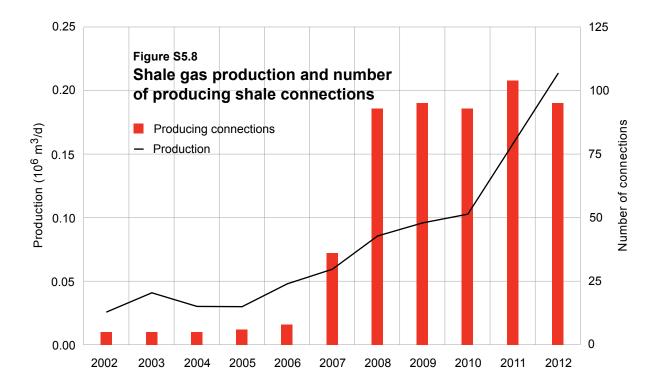
5.2.3.2 Coalbed Methane

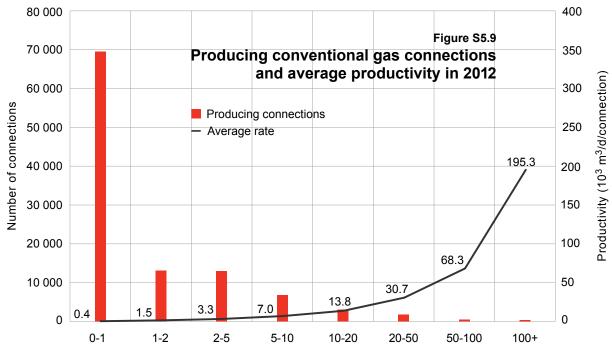
Total CBM and CBM hybrid production and numbers of producing connections are shown in **Figure S5.7**. This figure shows that Mannville CBM connections account for 9.2 per cent of the total CBM produced but represent

only 1.7 per cent of the total producing CBM connections. The chart illustrates the much higher productivity rates of the horizontal Mannville CBM connections compared with the vertical CBM and CBM hybrid Horseshoe Canyon connections.

Although these high productivity rates would normally indicate resource development, there have been low levels of activity in the Mannville CBM play due to the limited number of industry participants in the area, the high cost of development and maintenance, and the low gas price environment.

5.2.3.3 Shale Gas

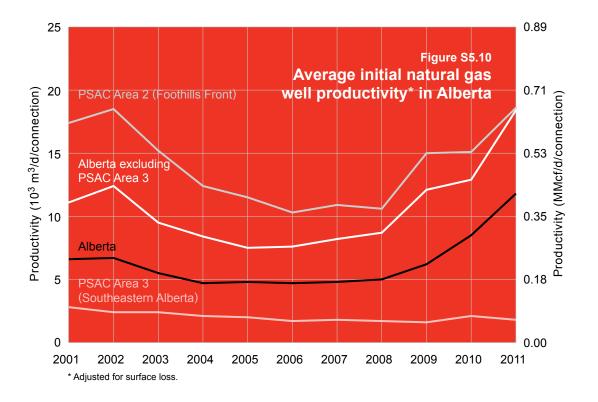

Shale gas production in Alberta is shown in **Figure S5.8** along with the number of producing shale gas connections in each year.

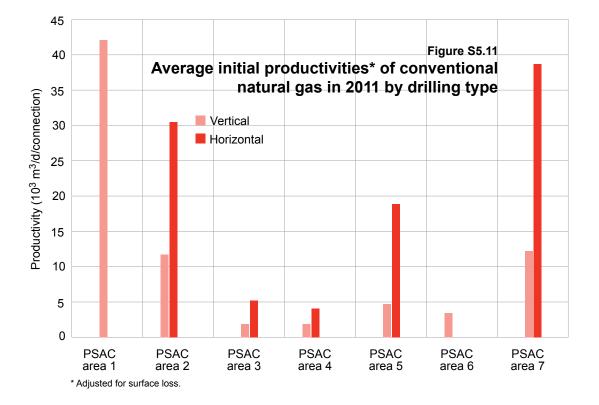

5.2.4 Production Characteristics of New Connections

5.2.4.1 Conventional Gas

As shown in **Figure S5.9**, 69 523 producing gas connections, or about 64 per cent, produce less than $1.0 \ 10^3 \ m^3/d$ of raw gas. In 2012, these gas connections produced at an average rate of 0.4 $10^3 \ m^3/d$ and contributed less than 10 per cent of the total natural gas production.

Less than 1 per cent of the conventional gas connections produced at rates over 50 10^3 m³/d, but they contributed 21 per cent of total production, down from 31 per cent in 2011. The percentage of gas production from wells in this category decreased dramatically in 2012 due to a decline in the number of new gas connections, which contain more high productive horizontal wells.


Productivity level (10³ m³/d/connection)


Average initial productivity of new conventional gas connections in some areas of the province is higher than in past years. **Figure S5.10** shows the average initial productivity of new connections by connection year for all the wells in Alberta, for all the wells in Alberta excluding PSAC Area 3, and for wells in PSAC Area 2 and in PSAC Area 3. Well productivity has been adjusted for surface losses to reflect sales gas rates as opposed to raw gas rates shown in the previous chart. Initial average daily production rates are calculated using the first full calendar year of production for gas connections.

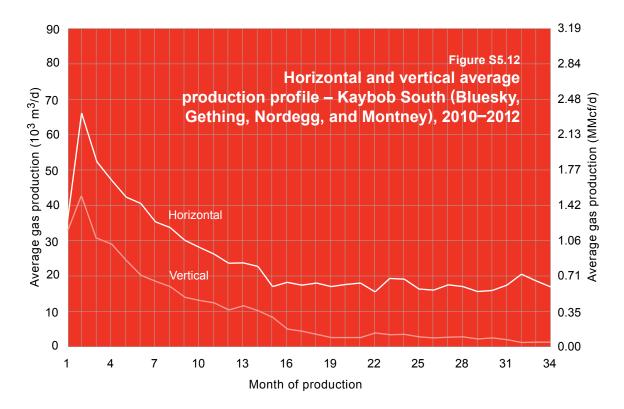

This figure illustrates the improvement in average initial well productivity of recent connections. This is a result of horizontal drilling and new completion techniques. Average initial well productivity increased in all areas of the province with the exception of PSAC Area 3, PSAC Area 4 (East-Central Alberta), and PSAC Area 6 (Northeastern Alberta).

Figure S5.11 shows average initial well productivity by well type for wells connected in 2011 in selected PSAC areas. PSAC Area 2, PSAC Area 5 (central Alberta), and PSAC Area 7 are where most horizontal wells have been brought on production. There were no horizontal gas wells connected in PSAC Area 1 (Foothills) or PSAC Area 6 in 2011.

Figure S5.12 shows typical gas production profiles for vertical and horizontal wells in the Kaybob South Field that are producing commingled gas from the Bluesky, Gething, Nordegg, and Montney formations. Wells that were placed on production within the 2010 to 2012 time period were used to illustrate the difference in production profiles by well type. The initial productivity of horizontal wells that are completed using multistage fracturing technology is significantly higher than the initial productivity of vertical wells. New horizontal wells

have much higher initial productivity than vertical wells, as illustrated earlier in **Figure S5.11**, and they continue to produce at much higher rates.

5.2.5 Supply Costs

Table S5.5 summarizes the estimated costs for conventional and CBM natural gas from selected areas in Alberta based on 2012 estimated costs and production profiles. The supply costs are based on representative wells in each PSAC area. Supply costs for different geological plays and PSAC areas vary significantly because of differing discovered reserves, production rates, well types, drilling and operating costs, royalties, etc. Therefore, the results may not be reflective of wells that differ from the representative well profiles used in the analysis.

The supply cost estimate for an average horizontal or vertical well in each PSAC area includes the following data: initial productivities, production decline rates, vertical drilled depths and total measured depths of the wells, gas composition, shrinkage, capital cost, operating costs, royalties and taxes, and a 10 per cent nominal rate of return. The supply costs in **Table S5.5** are not risked (i.e., assumes a 100 per cent success rate). The table shows that vertical wells have higher supply costs compared with horizontal ones, as vertical wells have lower initial productivities. Furthermore, liquids-rich gas improves the economics of development of gas wells, and therefore liquids-rich gas wells have lower supply costs than lean gas production such as CBM. The representative wells in PSAC Areas 1, 2, 5, and 7 are assumed to have liquids-rich gas production.

	Natural gas su	ppiy costs for i		na obin play al	cas			
Area	Type of well	Type of gas	Total measured depth (m)	Initial productivity (10 ³ m³/d)	Total capital cost \$000	Fixed operating cost (\$000/year)	Variable operating cost (\$/10 ³ m ³)	Natural gas supply cost (\$/GJ)
PSAC 1	Directional	Sour gas	4500	57.6	17970	202	53.2	7.23
PSAC 2	Vertical	Sweet gas	2500	14.6	2734	54	35.5	3.77
PSAC 2	Horizontal	Sweet gas	4200	38.1	4858	45	31.9	1.63
PSAC 3	Vertical	Sweet gas	560	2.0	411	11	49.7	6.98
PSAC 4	Vertical	Sweet gas	900	2.0	879	31	30.2	14.72
PSAC 5	Vertical	Sweet gas	1150	5.0	2219	56	39.0	11.44
PSAC 5	Horizontal	Sweet gas	2600	20.3	3482	45	31.9	3.36
PSAC 6	Vertical	Sweet gas	500	3.5	615	35	35.5	7.06
PSAC 7	Vertical	Sweet gas	2300	13.1	2589	63	30.2	5.82
PSAC 7	Horizontal	Sweet gas	3500	41.6	7236	63	33.7	4.88
CBM-HSC [♭]	Vertical	CBM	250	1.3	608	21	40.8	10.19
CBM-MAN ^c	Horizontal	CBM	2400	8.9	2051	28	31.9	6.97

Table S5.5 Natural gas supply costs for PSAC areas and CBM play areas^a

a Data from petroCube and the 2012 PSAC Well Cost Study have been used to estimate the supply costs in PSAC areas and CBM play areas.

^b Horseshoe Canyon.

° Mannville Corbett.

The average AECO-C daily natural gas price in 2012 was \$2.27/GJ, lower than the supply cost in many areas. Therefore, based on the assumptions used in the analysis, new gas developments were uneconomical in 2012 for most of the representative wells. However, some horizontal liquids-rich gas developments, mainly in PSAC Area 2, were found to yield positive returns. These findings are consistent with the shift in gas development in Alberta towards horizontal, liquids-rich gas drilling. In addition to the higher initial productivity for horizontal wells, the new royalty framework released by the Government of Alberta, effective January 2011, and royalty holiday programs have also provided incentives for deep horizontal drillings.

The results in **Table S5.5** also indicate high supply costs for vertical wells in PSAC Areas 4 and 5, as well as CBM wells producing from the Horseshoe Canyon play area. This is because of low initial well productivity, low gas liquids content, and/or relatively high capital costs per metre of drilling. The results are corroborated with the reduction of drilling activity in these areas.

5.2.6 Marketable Natural Gas Production – Forecast

In projecting conventional gas and CBM supply, the ERCB considers three components: expected production from existing conventional gas and CBM connections, expected production from new conventional gas and CBM connections in new and existing wells, and gas production from oil wells. The ERCB also takes into account its estimates of the remaining established and yet-to-be-established reserves of conventional natural gas in the province. Since shale gas development is in its early stages in Alberta, the ERCB does not have sufficient information to confidently forecast shale gas supply at this time.

To forecast gas production, production data from existing wells and new wells drilled and connected each year have been analyzed. The number of new connections and the average productivity for the wells are the main determining factors used in projecting natural gas production volumes over the forecast period.

5.2.6.1 Conventional Gas

To project natural gas production from existing conventional gas connections, the ERCB assumes the following:

- Decline rates for gas production from existing conventional gas connections at year-end 2012 vary depending on such factors as the ages, types, and geological and geographical locations of the wells. Overall, however, it is assumed that rates will decline by 14 per cent per year over the forecast period based on observed performance. This is lower than last year's forecast of a 16 per cent annual decline. Decline rates are typically higher at the early stage of production and stabilize as gas production continues over time. The ERCB lowered the decline rate from last year's forecast because recently more gas has been produced from wells that have been producing for eight years or more. In 2012, 51 per cent of total conventional gas production was from wells that were eight years or older, compared with 39 per cent in 2008.
- Production from existing conventional gas connections will be 228.1 10⁶ m³/d in 2013.
- Over the forecast period, production of conventional gas from existing wells is expected to decline from 228.1 10⁶ m³/d to 59.3 10⁶ m³/d.

Analyses on the initial productivities, decline rates, the numbers of connections, the remaining reserves, and return on investment were conducted for each PSAC area. For PSAC Areas 2, 5, and 7, further analyses were conducted for vertical wells, as well as horizontal wells since horizontal wells are predominantly located in these areas. To project natural gas production from new conventional gas connections, the ERCB made the following assumptions:

- The numbers of new conventional gas connections over the forecast period are projected to start at 1100 in 2013 and to gradually increase to 1425 by 2022. The number of forecast connections is significantly lower relative to last year's forecast of 3800 largely due to a shift from vertical and directional wells to more capital-intensive but highly productive horizontal wells. The natural gas price forecast is also lower relative to last year's forecast. Finally, much lower drilling activity in 2012 compared with 2011 is reflected in the lower projection for the conventional gas connections over the forecast period.
- Conventional gas connections in PSAC Area 3 will represent 18 per cent of all new conventional gas connections in 2013. This will gradually decline to 16 per cent of new connections in 2022. This year's forecast percentage of PSAC Area 3 compared with all new conventional gas connections is significantly lower than the last forecast due to a large decrease from 41 per cent in 2011 to 19 per cent in 2012. The ERCB also expects that the shift in new connections from PSAC Area 3 to PSAC Areas 2, 5, and 7 will continue as the gas producers will see a much higher return on investment on the liquids-rich gas in the latter three areas than the dry gas in PSAC Area 3. The persisting low gas prices will not improve the profitability in PSAC Area 3 for the forecast period.
- The ERCB expects that PSAC Areas 2, 5, and 7 will represent 78 per cent of all new conventional connections in 2013, increasing slightly to 79 per cent in 2022. Horizontal wells, on the other hand, are projected to represent 67 per cent of the new connections in these PSAC areas in 2013, increasing to 72 per cent in 2022.
- The average initial productivity of a new conventional gas connection in PSAC Area 3 will be 2.0 10³ m³/d over the forecast period.
- The average initial productivity of a new conventional gas connection in the rest of the province will be 22.7 10³ m³/d in 2013, gradually increasing to 24.6 10³ m³/d by 2022. This forecast initial productivity is significantly higher than the previous forecast and will continue to increase over the forecast period due to the expectation that new conventional gas connections will increasingly use horizontal wells with multistage fracturing technology. The ERCB expects that PSAC Areas 2, 5, and 7, where the majority of horizontal wells have been drilled to date, will experience the main growth in drilling activities over the forecast period.
- Production from new gas wells, although it varies according to factors such as well type and geological and geographical locations, will generally decline by 35 per cent in the first year, 24 per cent in the second year, 19 per cent in the third year, and 16 per cent in the fourth year. The decline rate will then continue to decrease gradually every year reaching 12 per cent in the tenth year.

• Gas production from oil wells, based on observed performance, will be 33.7 10³ m³/d in 2013, and it will gradually decrease to 28.6 10³ m³/d in 2022. This forecast reflects recent actual performance.

Tables S5.6, **S5.7**, and **S5.8** show the ERCB's forecast initial productivities, declines rates, and the numbers of new gas well connections.

Based on the remaining established and yet-to-be-established reserves, and the assumptions described above, the ERCB forecasts conventional marketable gas production to 2022. The production of marketable gas from conventional reserves is expected to decrease from 265.2 10⁶ m³/d in 2012 to 205.9 10⁶ m³/d by 2022.

If conventional natural gas production rates follow the projection, Alberta will have recovered 80 per cent of the 6528 10⁹ m³ ultimate potential by 2022.

5.2.6.2 Coalbed Methane

In projecting CBM supply, the ERCB considers expected production from existing CBM connections and expected production from new CBM connections. These new CBM connections include CBM connections into new wells drilled and recompletions into existing wells. Continual reclassification of CBM connections results in revisions to historical data and, therefore, changes to annual forecasts.

To forecast production from CBM and CBM hybrid connections before 2013, the ERCB assumed the following:

- All gas production from identified CBM and hybrid connections is included.
- All existing CBM and hybrid producing connections are expected to decline annually based on historical trends.
- Over the forecast period, production of existing CBM and CBM hybrid wells is expected to decline from 20.8 10⁶ m³/d to 12.3 10⁶ m³/d.

To forecast production from new CBM and CBM hybrid connections, the ERCB assumed the following:

- Over the forecast period, the majority of new CBM and CBM hybrid production will be from the Horseshoe Canyon play area.
- The number of new CBM and CBM hybrid connections will be 230 in 2013 and will increase slightly to 245 in 2022. This forecast is significantly lower than last year's projection and is due to the very low level of activity reported in 2012 and the expectation that return on investment will not improve over the forecast period because of continuing low gas prices.
- The average initial productivity of a new gas connection in the Horseshoe Canyon play area will be 1.3 10³ m³/d and gradually decrease to 0.8 10³ m³/d in 2022.
- The percentage of recompletions in existing wells versus new connections within the Horseshoe Canyon play area will remain at 2012 levels over the forecast period.

Area	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
PSAC 1	57.6	57.6	58.2	58.2	58.8	58.2	57.6	57.0	56.4	55.9
PSAC 2 vertical well	14.6	14.6	14.5	14.5	14.5	14.5	14.3	14.3	14.3	14.3
PSAC 2 horizontal well	38.1	38.9	39.6	40.4	41.2	41.0	41.0	41.0	40.0	40.0
PSAC 3	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
PSAC 4	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
PSAC 5 vertical well	5.0	5.0	5.0	5.0	5.0	5.0	4.9	4.9	4.8	4.8
PSAC 5 horizontal well	20.3	20.3	20.3	20.1	20.1	19.9	19.9	19.7	19.7	19.7
PSAC 6	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
PSAC 7 vertical well	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7
PSAC 7 horizontal well	41.6	42.4	43.3	44.1	45.0	45.0	44.6	44.1	43.7	43.3

Table S5.6 Forecast initial productivity for new gas wells (10³ m³/d)

Table S5.7 Forecast decline rates for new gas wells

Area	Year 1	Year 2	Year 3	Year 4	Years 5–9	Year 10
PSAC 1	25%	22%	15%	15%	Gradual decline	11%
PSAC 2	34%	24%t	18%	16%	Gradual decline	12%
PSAC 3	33%	22%	17%	15%	Gradual decline	11%
PSAC 4	37%	30%	26%	21%	Gradual decline	16%
PSAC 5	38%	27%	22%	21%	Gradual decline	13%
PSAC 6	38%	31%	22%	20%	Gradual decline	16%
PSAC 7	39%	28%	24%	21%	Gradual decline	14%

Table S5.8 Forecast number of new gas well connections

Area	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
PSAC 1	10	10	10	10	10	10	15	15	15	15
PSAC 2 vertical well	220	220	220	220	220	220	220	220	220	230
PSAC 2 horizontal well	450	450	450	460	460	480	500	520	530	550
PSAC 3	200	200	200	200	210	220	230	230	230	230
PSAC 4	30	30	30	30	30	30	30	30	50	50
PSAC 5 vertical well	50	50	50	50	50	60	60	60	60	60
PSAC 5 horizontal well	60	60	60	60	80	80	90	100	100	100
PSAC 6	5	10	10	10	10	10	10	10	10	10
PSAC 7 vertical well	15	15	15	20	20	20	20	20	20	20
PSAC 7 horizontal well	60	60	60	80	80	100	130	160	160	160
Total	1100	1105	1105	1140	1170	1230	1305	1365	1395	1425

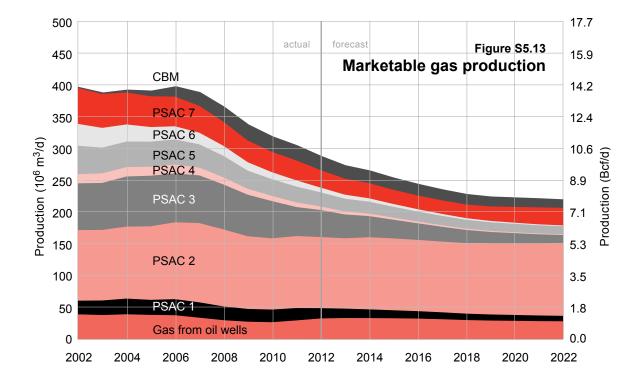
Production from CBM connections, which includes commingled production from conventional gas formations, is expected to decrease from 22.3 10⁶ m³/d in 2012 to 13.8 10⁶ m³/d in 2022, lower than last year's forecast. In 2012, CBM production contributed 7.8 per cent of the total Alberta marketable gas production, similar to the previous year, and it is projected to contribute 6.3 per cent of the total Alberta marketable gas production in 2022, compared with last year's expectation of a 7.6 per cent contribution in 2021.

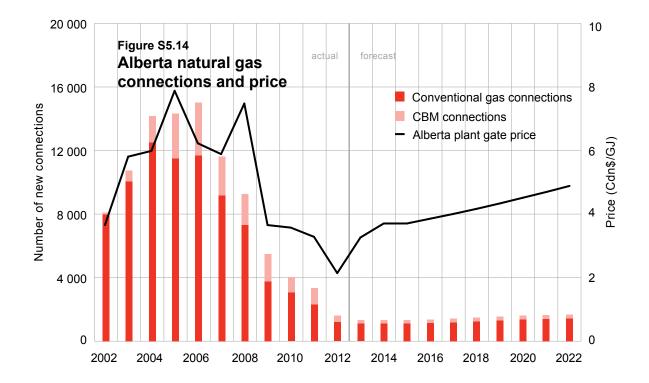
5.2.6.3 Shale Gas

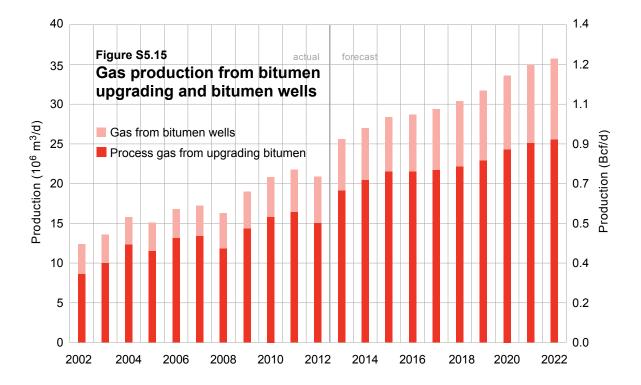
As mentioned earlier, the ERCB does not have sufficient information to confidently forecast shale gas supply at this time. The economic viability of shale development in Alberta is currently unclear; however, it has the potential to become a significant supply source. Commercial shale gas production is in its infancy, and it will take time to establish the producibility of the resource. The pace of shale gas development will be affected by the natural gas price environment, supply costs, and technology.

5.2.6.4 Total Gas Production

The ERCB's forecast of conventional gas production from gas wells in each PSAC area, conventional oil wells, as well as CBM production, are shown in **Figure S5.13**. The ERCB forecasts that the total marketable gas production will decline from 272.8 10⁶ m³/d in 2013 to 219.7 10⁶ m³/d in 2022. This compares with last year's forecast of 205.6 10⁶ m³/d in 2021.


Figure S5.14 illustrates historical and forecast new connections for conventional gas and coalbed methane wells, along with plant gate gas prices (see Section 1 for discussion on price forecasts).


Figure S5.15 shows process gas production (rich in liquids) from bitumen upgrading and raw natural gas from bitumen wells. Gas from these sources is used primarily as fuel in oil sands development.


In 2012, about 15.0 10⁶ m³/d of process gas was generated at oil sands upgrading facilities, compared with a revised volume of 16.4 10⁶ m³/d in 2011, and was primarily used as fuel. This number is expected to reach 25.5 10⁶ m³/d by the end of the forecast period. Natural gas production from primary and thermal bitumen wells increased by 0.6 10⁶ m³/d to 5.9 10⁶ m³/d in 2012 and is forecast to increase to 10.2 10⁶ m³/d by 2022. This gas is used mainly as fuel to create steam for on-site operations. Additional small volumes of gas are produced from primary bitumen wells and are used for local operations.

5.2.7 Commercial Natural Gas Storage

Commercial natural gas storage is used by the natural gas industry to provide short-term deliverability; the ERCB does not use volumes of commercially stored natural gas in the long-term production projection. Several pools in the province are being used for commercial natural gas storage to provide an efficient means of balancing supply with fluctuating market demand. Commercial natural gas storage is defined as the storage of third-party non-native gas; traditionally it allows marketers to take advantage of seasonal price differences, effect custody transfers, and maintain reliability of supply. Natural gas from many sources may be stored at these facilities under

fee-for-service, buy-sell, or other contractual arrangements. There are other gas storage schemes in the province that are not included in this category.

In the summer season, when demand is lower, natural gas is injected into these pools. As winter approaches, the demand for natural gas rises, injection slows or ends, and storage withdrawals generally begin at high withdrawal rates. Commercial natural gas storage pools, along with the operators and storage information, are listed in **Table S5.9**.

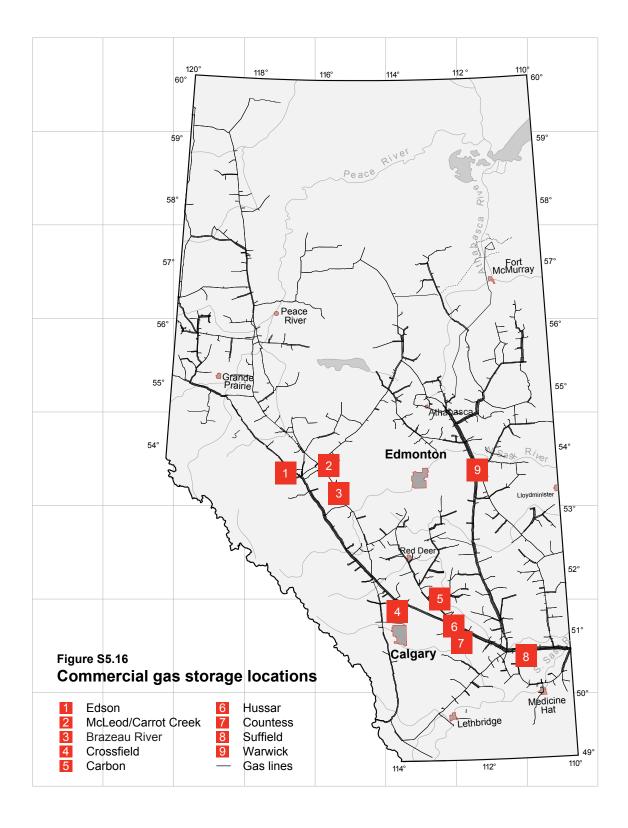
In 2012, natural gas injections for all storage schemes exceeded withdrawals by 487 10⁶ m³. This compares with 2687 10⁶ m³ net injection in 2011. The increase in the U.S.-marketed gas production discussed earlier in this section has reduced the volume of Alberta export gas entering Canadian and U.S. markets. Even though the intra-Alberta demand has been steadily increasing, as mentioned later in this section, the decrease in the export demand contributed to the continued trend of net injection in 2012. Very high inventories of working gas throughout the year, however, caused a large reduction in injection volumes, as well as withdrawal volumes, in 2012.

Marketable gas production volumes determined for 2012 were adjusted to account for the imbalance between volumes injected and volumes withdrawn from these storage pools. For the purpose of projecting future natural gas production, the ERCB assumes that injections and withdrawals are balanced for each year during the forecast period.

Figure S5.16 shows the location of existing gas storage facilities along the pipeline systems within Alberta.

Pool	Operator	Storage capacity (10 ⁶ m³)	Maximum deliverability (10³ m³/d)	Injection volumes, 2012 (10 ⁶ m ³)	Withdrawal volumes, 2012 (10 ⁶ m ³)
Carbon Glauconitic	ATCO Midstream	1 127	15 500	684	624
Carrot Creek CCC	Iberdrola Canada Energy Services Ltd.	986	16 900	352	312
Countess Bow Island N & Upper Mannville M5M	Niska Gas Storage	1 552	35 217	554	302
Crossfield East Elkton A & D	CrossAlta Gas Storage	1 197	14 790	362	284
Edson Viking D	TransCanada Pipelines Ltd.	1 775	25 740	593	335
Hussar Glauconitic R	Husky Oil Operations Ltd	423	5 635	17	93
McLeod Cardium D	Iberdrola Canada Energy Services Ltd.	282	4 230	10	14
Nisku E	Wild Rose Energy Ltd.	940	11 000	0	0
Suffield Upper Mannville I & K, and Bow Island N & BB & GGG	Niska Gas Storage	2 254	50 713	473	550
Warwick Glauconitic-Nisku A	Warwick Gas Storage Inc.	881	3 300	378	422
Total		11 417	178 676	3 423	2 936
Difference					487

Table S5.9 Commercial natural gas storage pools as of December 31, 2012


5.2.8 Alberta Natural Gas Demand

The *Alberta Gas Resources Preservation Act* (first proclaimed in 1949) provides supply security for consumers in Alberta by "setting aside" large volumes of gas for their use before gas removals from the province are permitted. The act requires that when a company proposes to remove gas from Alberta, it must apply to the ERCB for a permit authorizing the removal. Removal of gas from Alberta is only permitted if the gas to be removed is surplus to the needs of Alberta's core consumers for the next 15 years. Core consumers are defined as Alberta residential, commercial, and institutional gas consumers who do not have alternative sustainable fuel sources.

The calculation in **Table S5.10** is done annually to determine what volume of gas is available for removal from Alberta after accounting for Alberta's future requirements. Using the 2012 remaining established reserves number, surplus natural gas is currently calculated to be 440 10⁹ m³. **Figure S5.17** illustrates historical "available for permitting" volumes.

Gas removals from Alberta have declined since 2001, from 311.5 10⁶ m³/d in 2001 to 159.6 10⁶ m³/d in 2012. Based on the ERCB's projection of gas production, this rate is forecast to drop to 49.3 10⁶ m³/d by 2022. This is higher than last year's projection of 38.1 10⁶ m³/d by 2021 mainly because this year's natural gas supply forecast is slightly higher.

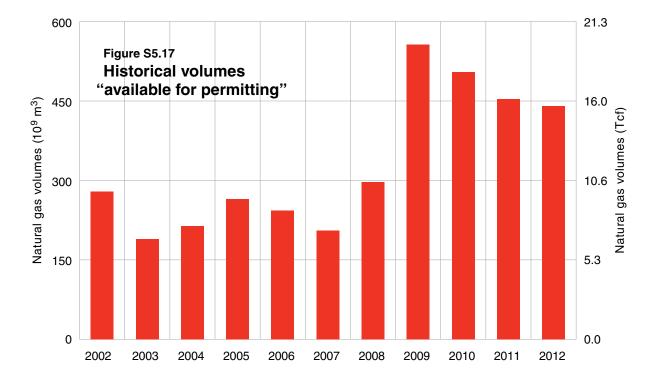
The ERCB annually reviews the projected demand for Alberta natural gas. It focuses these reviews on intra-Alberta natural gas use and provides a detailed analysis of many factors, such as population growth, industrial activity, alternative energy sources, and other factors that influence natural gas consumption in the province.

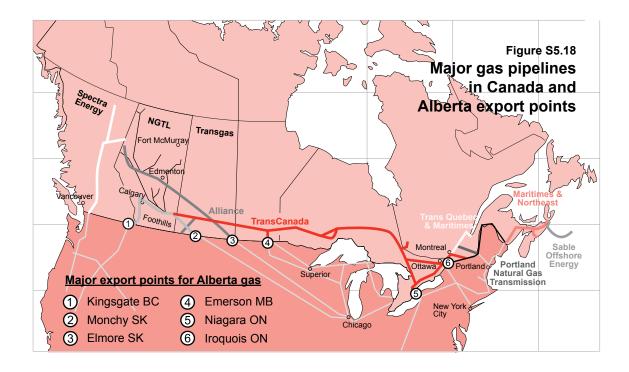
	10 ⁹ m ³ at 37.4 MJ/m ³
Reserves (as of year-end 2012)	
1. Total remaining established reserves	957
Alberta requirements	
2. Core market requirements	105
3. Contracted for noncore markets ^a	147
4. Permit-related fuel and shrinkage	24
Permit requirements	
5. Remaining permit commitments ^b	241
6. Total requirements	517
Available	
7. Available for removal permits	440

Table S5.10 Estimate of gas reserves available for inclusion in removal permits as of December 31, 2012

^a For these estimates, 15 years of core market requirements and 5 years of noncore requirements were used.

^b The remaining permit commitments are split approximately 96 per cent under short-term permits and 4 per cent under long-term permits.


Forecasting demand for Alberta natural gas in markets outside the province is done less rigorously. For Canadian ex-Alberta markets, historical demand growth and forecast supply are used in developing the demand forecasts. Export markets are forecast based on removal pipeline capacity available to serve such markets and on the recent historical trends in meeting that demand. Excess pipeline capacity to the United States allows gas to move to areas of the United States that provide for the highest netback to the producer. The major natural gas pipelines in Canada that move Alberta gas to market are illustrated in **Figure S5.18**, with export points identified.


Figure S5.19 illustrates the breakdown of marketable natural gas demand in Alberta by sector. In 2012, demand within Alberta was 127.9 10^6 m³/d, which represented 44 per cent of the total Alberta natural gas production. By the end of the forecast period, demand will reach 170.4 10^6 m³/d, or 78 per cent of total Alberta production.

Residential gas requirements are expected to grow moderately at an average annual rate of four per cent over the forecast period. The key variables that affect residential gas demand are natural gas prices, population, the number of households, energy efficiency, and the weather. Improvements in energy efficiency prevent household energy use from rising significantly.

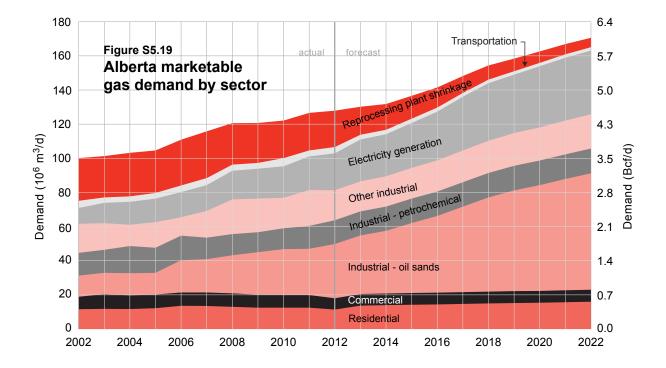
Commercial gas demand in Alberta has declined gradually since 2003 and is expected to continue to decline at an average annual rate of 0.5 per cent per year over the forecast period. This is largely due to gains in energy efficiency and a shift towards electricity.

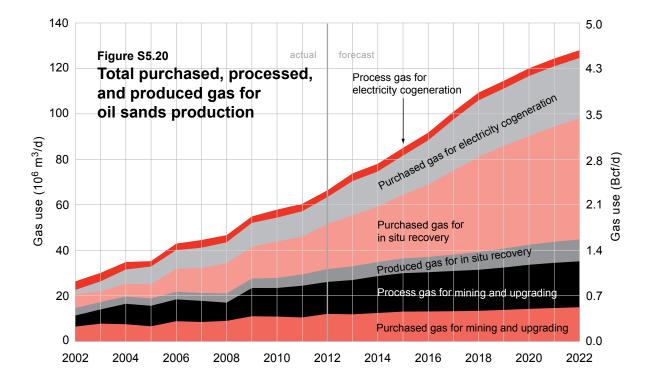
The electricity-generating industry will require increased volumes of natural gas to fuel new industrial on-site and gas-fired generation plants expected to come on stream over the forecast period. Natural gas requirements for electricity generation are expected to increase from about 21.6 10^6 m³/d in 2012 to 37.3 10^6 m³/d by 2022. The projected increase in gas demand in this sector is due to the assumption that gas will be the preferred feedstock for new power plants.

	Excluding purchased gas for cogeneration		tion Including purchased gas for cogeneration	
Extraction method	(m³/m³)	(mcf/bbl)⁵	(m³/m³)	(mcf/bbl)
In situ				
SAGD	150	0.84	208	1.17
CSS	176	0.99	221	1.24
Mining with upgrading	108	0.60	148	0.82

Table S5.11 Average use rates of purchased gas for oil sands operations, 2012^a

^a Expressed as cubic metres of natural gas per cubic metre of upgraded/nonupgraded bitumen production. Rates are an average of typical schemes with sustained production.


^b Million cubic feet per barrel.


Another significant increase in Alberta demand is due to projected development in the industrial sector. Gas demand for oil sands operations will increase from 31.8 10⁶ m³/d in 2012 to 68.2 10⁶ m³/d in 2022. **Table S5.11** outlines the average purchased gas use rates for oil sands operations. Gas production from and demand for the oil sands operations are sourced from the PETRINEX.

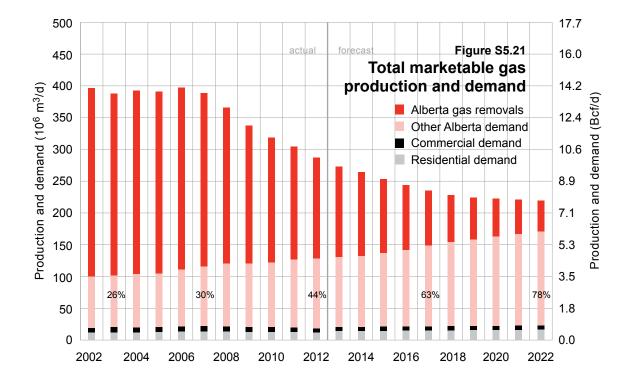

As noted earlier, oil sands upgrading operations produce process gas that is used on site. The in situ operations also produce solution gas from bitumen wells. **Figure S5.20** shows total gas use by the oil sands sector, including gas used for in situ recovery, mining and upgrading, and electricity cogeneration. The gas supply sources include purchased gas, process gas from mining and upgrading operations, and produced gas from bitumen wells. Gas use by the oil sands sector was 66.4 10⁶ m³/d in 2012 and is forecast to increase to 128.0 10⁶ m³/d by 2022.

Figure S5.21 shows total Alberta natural gas demand and production. Natural gas produced from bitumen wells or from bitumen upgrading (**Figure S5.15**) is considered to be used on site and is not included as marketable production available to meet Alberta demand. Therefore, gas removals from the province represent natural gas production from conventional and CBM production only (and do not include imports from British Columbia), minus Alberta demand.

In 2012, about 44 per cent of Alberta production was used domestically. The remainder was sent to other Canadian provinces and the United States. By the end of the forecast period, domestic demand will represent 78 per cent of total Alberta natural gas production. However, the forecast does not include any potential shale gas production that may occur in Alberta. Additionally, natural gas supply from British Columbia that moves through Alberta to market is also not included in this analysis. The B.C. supply is expected to increase over the forecast period and provides Alberta with an additional source of natural gas if needed.

HIGHLIGHTS

Total remaining extractable NGL reserves have decreased by 1 per cent from 2011 as a result of decreasing natural gas reserves. 6

Approximately 70 per cent of total ethane in the gas stream was extracted in 2012, compared with 68 per cent in 2011 and 63 per cent in 2010.

NATURAL GAS LIQUIDS

Produced natural gas is primarily methane, but it also contains heavier hydrocarbons consisting of ethane (C_2), propane (C_3), butanes (C_4), and pentanes and heavier hydrocarbons (typically referred to as pentanes plus or C_5 +), all of which are referred to as natural gas liquids (NGLs). Natural gas also contains water and contaminants such as carbon dioxide (CO_2) and hydrogen sulphide (H_2S). In Alberta, the production of all ethane, pentanes plus, and most propane and butanes are from the raw natural gas stream. Most of the NGL supply is recovered from the processing of natural gas at gas plants, although some pentanes plus is recovered as condensate at the field level and sold as product. Other sources of NGLs are crude oil refineries, where small volumes of propane and butanes are recovered, and from gases produced as by-products of bitumen upgrading called off-gas. Off-gas is a mixture of hydrogen and light gases, including ethane, propane, and butanes. Most of the off-gas produced from oil sands upgraders is currently being used as fuel for oil sands operations. Unconventional gas is generally lean, with fewer hydrocarbon liquids, so it is not expected to contribute to future NGL reserves.

The ERCB estimates remaining reserves of NGLs based on volumes expected to be recovered from remaining raw natural gas using existing technology and projected market conditions, which are described in Section 6.2.1. Initial reserves for NGLs are not calculated since historically only a fraction of the liquid volume that could have been extracted was recovered, and much was flared for lack of market demand. The ERCB's projections for the overall recovery of each NGL component are explained in Section 5.1.3.5. As shown graphically in Figure R5.8, the estimate of the reserves of liquid ethane is based on the assumption that 65 per cent of the total raw ethane gas reserves will be extracted from the natural gas stream, while 85 per cent of propane, 90 per cent of butane, and 100 per cent of pentanes plus are assumed extracted from the gas stream. Although it is reasonable to expect that some heavier liquids will drop out in the reservoir as pressure declines with depletion and will not be recovered, the ERCB's calculations assume that the composition of raw produced gas remains unchanged over the life of a pool because it is difficult to predict and the volume is not expected to be significant. The NGL reserves expected to be removed from natural gas are referred to as extractable reserves, and those not expected to be recovered are included as part of the province's natural gas reserves, as discussed in Section 5.1.

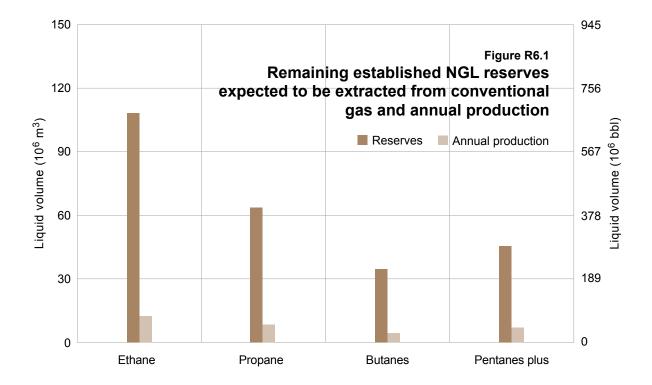
6.1 Reserves of Natural Gas Liquids

6.1.1 Provincial Summary

Estimates of the remaining established reserves of extractable NGLs in 2012 are summarized in **Tables R6.1** and **R6.2**. Figure R6.1 shows remaining established reserves of extractable NGLs compared with 2012 production.

Total remaining reserves of extractable NGLs have decreased by 1.0 per cent compared with 2011 because of the decline in natural gas reserves. Fields that have contributed significantly to this decrease are Fir, Pembina, and Sundance. These fields and others containing large NGL volumes are listed in **Appendix B**, **Tables B.6** and **B.7**.

Table R6.1 Established reserves and production change highlights of extractable NGLs (10⁶ m³ liquid)^a

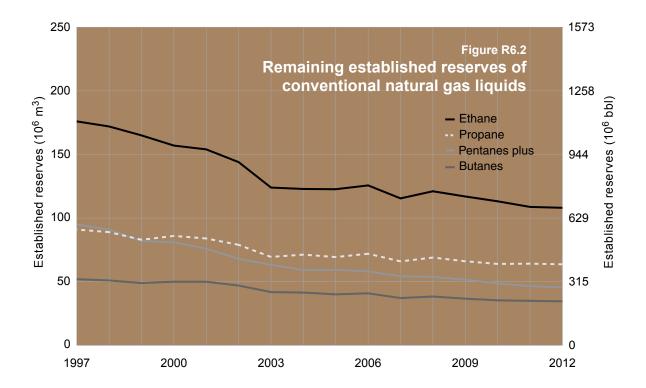

	2012	2011	Change
Cumulative net production			
Ethane	318.0	305.5	+12.5
Propane	303.4	295.1	+8.3
Butanes	172.8	168.4	+4.4
Pentanes plus	366.6	359.6	+7.0
Total	1 160.8	1128.6	+32.2
Remaining (expected to be extracted)			
Ethane	108.1	108.8	-0.8
Propane	63.7	64.2	-0.5
Butanes	34.6	35.0	-0.4
Pentanes plus	45.5	46.5	-0.9
Total	252.0	254.5	-2.5
	(1 590 10 ⁶ bbl ^b)	(1 602 10 ⁶ bbl)	
Annual production	32.2	32.4	-0.2

^a 10⁶ m³ = million cubic metres

b bbl = barrels

Table R6.2 Reserves of NGLs as of December 31, 2012 (10⁶ m³ liquid)

	Ethane	Propane	Butanes	Pentanes plus	Total
Total NGLs in remaining raw gas	164.9	75.0	38.5	45.5	323.9
Liquids expected to remain in dry marketable gas	56.8	11.2	3.8	0.0	71.9
Remaining established reserves recoverable from					
Field plants	43.1	37.5	23.1	41.0	144.7
Straddle plants	64.9	26.2	11.5	4.6	107.3
Total	108.1	63.7	34.6	45.5	252.0



6.1.2 Ethane

As of December 31, 2012, the ERCB estimates remaining established reserves of extractable ethane to be 108.1 10⁶ m³ in liquefied form. Of that, 43.1 10⁶ m³ is expected to be recovered from field plants and 64.9 10⁶ m³ from straddle plants that deliver gas outside the province, as shown in **Table R6.2.** It is estimated that 6.4 10⁶ m³ is recoverable from the ethane component of solvent injected into pools under miscible flood to enhance oil recovery. At the end of 2012, only four pools were still actively injecting solvent: Rainbow Keg River B, Rainbow Keg River F, Judy Creek Beaverhill Lake A, and Swan Hills Beaverhill Lake A&B Pools.

Thirty-five per cent of the total raw ethane, or 56.8 10⁶ m³ (liquid), is estimated to remain in the marketable gas stream and could potentially be recovered. **Figure R6.2** shows the remaining established reserves of ethane declining rapidly from 1996 to 2003 then levelling off as more ethane is extracted from raw gas. In 2012, the extraction of specification ethane was 12.5 10⁶ m³, compared with 12.9 10⁶ m³ in 2011.

For individual gas pools, the ethane content of gas in Alberta varies considerably, falling within the range of 0.0025 to 0.20 mole per mole (mol/mol). As shown in **Appendix B**, **Table B.6**, the volume-weighted average ethane content of all remaining raw gas is 0.052 mol/mol. Also listed in this table are ethane volumes recoverable from fields containing the largest ethane reserves. Of these fields, the eight largest—in alphabetical order, Ansell, Elmworth, Kaybob South, Pembina, Rainbow, Wapiti, Wild River, and Willesden Green—account for 28 per cent of total ethane reserves but only 17 per cent of remaining established marketable gas reserves.

6.1.3 Other Natural Gas Liquids

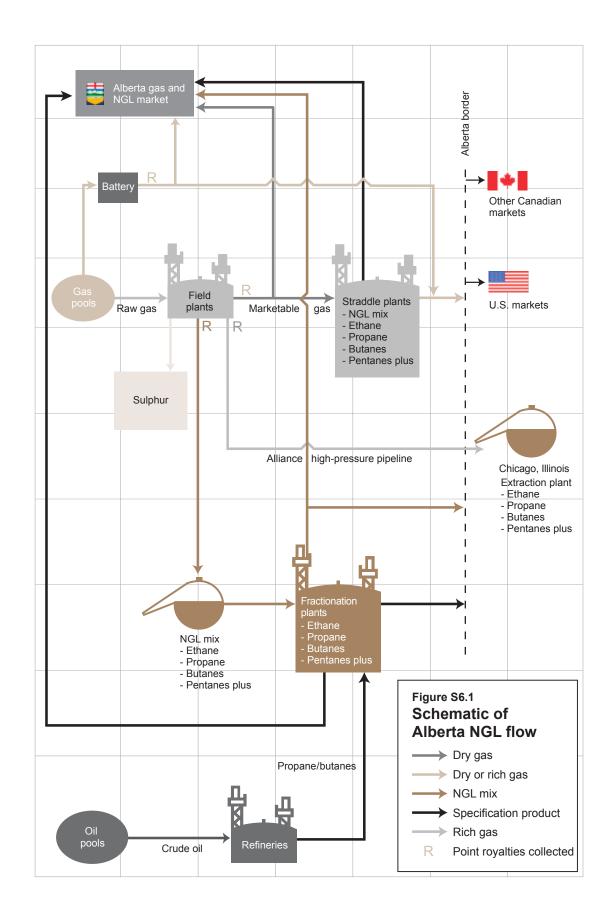
As of December 31, 2012, the ERCB estimates remaining extractable reserves of propane, butanes, and pentanes plus to be 63.7 10⁶ m³, 34.6 10⁶ m³, and 45.5 10⁶ m³, respectively. The breakdown in the liquids reserves at yearend 2012 is shown in **Table R6.2**. **Table B.7** in **Appendix B** lists propane, butanes, and pentanes plus reserves in fields containing the largest remaining liquids reserves. The largest of these fields—in alphabetical order, Ansell, Brazeau River, Kaybob South, Pembina, Rainbow, Swan Hills South, Wild River, and Willesden Green—account for about 27 per cent of the total propane, butanes, and pentanes plus liquid reserves. The volumes recoverable at straddle plants are not included in the field totals but are shown separately at the end of the table.

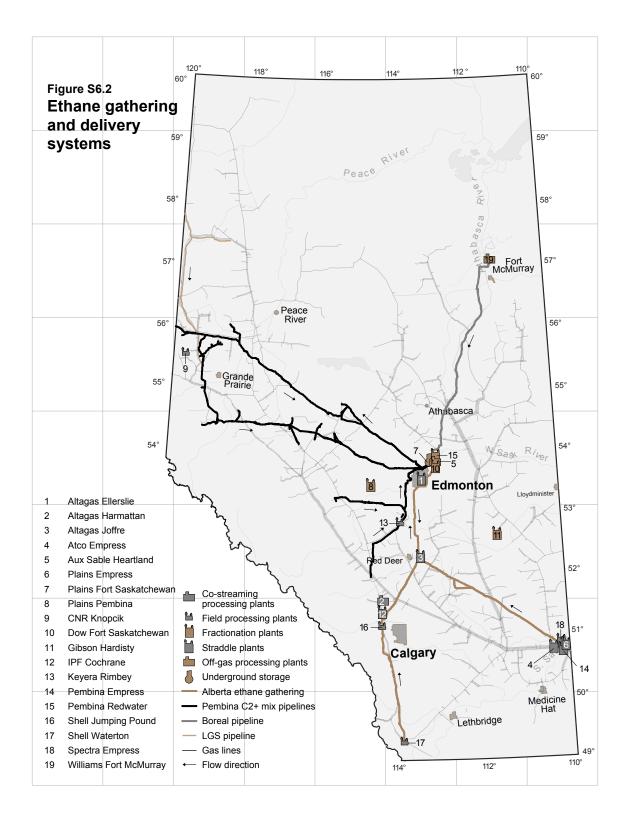
6.1.4 Ultimate Potential

The remaining ultimate potential of liquid ethane is determined based on projected market demand and the volumes that could be recovered as liquid from the remaining ultimate potential of natural gas using existing cryogenic technology. The percentage of ethane volumes that have been extracted have been generally increasing over time. In 2012, there was a substantial increase for the fourth year in a row as the percentage recovered was 70 per cent, up from 68 per cent in 2011 and 63 per cent in 2010. The ERCB estimates that 70 per cent of the remaining ultimate potential of ethane gas will be extracted. Based on a remaining ethane gas ultimate potential of 111 billion (10⁹) m³, the ERCB estimates the remaining ultimate potential of liquid ethane to be 277 10⁶ m³. The other 30 per cent, or 33 10⁹ m³, of ethane gas is expected to be sold for its heating value as marketable natural gas.

For liquid propane, butanes, and pentanes plus combined, the remaining ultimate potential is 321 10⁶ m³. This assumes that the remaining ultimate potential as a percentage of the initial ultimate potential is similar to that of conventional marketable gas—about 30 per cent.

Additionally, 9301 10⁶ m³ of unconventional, in-place NGLs in six key shale formations in Alberta have been identified by the new shale- and siltstone-hosted hydrocarbon resources study discussed in **Section 2.2.1**. This very large resource represents a huge potential for future development, but the technical, economic, environmental, and social constraints on recoverability were not included in the study. Consequently, the ERCB has not yet determined this resource's ultimate potential, but anticipates that the increase to the ultimate potential of natural gas liquids could be substantial.


6.2 Supply of and Demand for Natural Gas Liquids


In forecasting ethane and other NGLs, the ERCB recognized that NGL content, gas plant recovery efficiencies, NGL prices, and gas production volumes from remaining established reserves and future gas reserves additions affect future production. For ethane, demand also plays a major role in future extraction. The NGL content from new gas reserves is expected to be more liquids rich than existing reserves. In the future, ethane and other gas liquids extracted from oil sands off-gas will supplement supplies from conventional gas production and will be needed to meet the forecast ethane demand.

Ethane and other NGLs are recovered mainly from the processing of natural gas. Field gas processing facilities ensure that natural gas meets the quality specifications of the rate-regulated natural gas pipeline systems, which may require removal of NGLs to meet pipeline hydrocarbon dew point specifications. Removal of other gas contaminants, such as H_2S and CO_2 , is also required. Field plants generally recover additional volumes of NGLs—more than what is required to meet pipeline specifications, depending on the plant's extraction capability—to obtain full value for the NGL components. Generally, the heavier NGLs (butanes and pentanes plus) are removed at field plants. Field plants may send recovered NGL mix to centralized, large-scale fractionation plants where the mix is fractionated into specification products. Liquids that are heavy enough to be naturally collected at the field level due to the drop in pressure and temperature are called condensate. The properties of condensate and pentanes plus are similar, and the terminology is often used interchangeably as both are marketed in the same way in western Canada.

Gas reprocessing plants, often referred to as straddle plants, recover NGL components or NGL mix from marketable gas. They are usually located on rate-regulated main gas transmission pipelines at border delivery points. Straddle plants remove much of the propane plus (C_3 +) and ethane volumes, with the degree of recovery being determined by the plant's extraction capability, contractual arrangements, and product demand. **Figure S6.1** illustrates the stages involved in processing raw gas and crude oil for the recovery of ethane, propane, butanes, and pentanes plus.

Figure S6.2 shows the pipeline systems that move ethane and ethane plus (C_2^+) mix NGLs from the processing plants to the markets. Gas processing plants capable of extracting C_2^+ mix NGLs are typically tied to C_2^+ mix

NGL gathering systems that move liquids to NGL fractionators in the Fort Saskatchewan area. Ethane recovered at field processing plants, NGL fractionators, and the straddle plants is shipped on the Alberta Ethane Gathering System to the Alberta ethane market.

6.2.1 Ethane and Other Natural Gas Liquids Production – 2012

In Alberta, there are about 510 active gas processing plants that recover NGL mix or specification products, 8 fractionation plants that fractionate NGL mix streams into specification products, and 9 straddle plants. After receiving approval from the ERCB in December 2010, the Harmattan-Elkton gas plant started reprocessing marketable gas in 2012. The plant also continues to process raw gas from nearby pools (costreaming).

Recovery efficiencies of NGL specification products at field plants depend on plant design and economics and generally range from 75 to 98 per cent for propane, 90 to 100 per cent for butanes, and 98 to 100 per cent for pentanes plus. A few field plants are also capable of extracting ethane as a specification product or as a C_2 + mix NGL and are referred to as deep-cut facilities.

Ethane recovery at straddle plants varies from 40 to 90 per cent and averages 65 per cent. The average percentages of propane, butanes, and pentanes plus recovered at Alberta straddle plants are 98.5, 99.5, and 99.8, respectively. **Table S6.1** outlines information for 2012 about the straddle plants operating in Alberta, including the plant location, operator name, approved natural gas throughput volumes, natural gas receipts (actual throughput volumes), and the volume of specification ethane recovered (unless otherwise noted).

Area of straddle			Gas approved volumes	Gas receipts	Ethane production
plant	Location	Operator	(10 ³ m ³ /d)	(10 ³ m ³ /d)	(m³/d)
Empress	10-11-020-01W4M	Spectra Energy Empress Management	67 960	37 889	3 886
Empress	04-12-020-01W4M	BP Canada Energy Company	176 750	39 005	5 247
Cochrane	16-16-026-04W5M	Inter Pipeline Extraction Ltd.	70 450	49 763	8 210
Ellerslie (Edmonton)	04-04-052-24W4M	AltaGas Ltd.	11 000	8 454	1 451
Empress	01-10-020-01W4M	ATCO Midstream Ltd.	31 000	13 105	962
Fort Saskatchewan*	01-03-055-22W4M	ATCO Midstream Ltd.	1 051	690	0
Empress	16-02-020-01W4M	1195714 Alberta Ltd.	33 809	32 503	4 477
Joffre (JEEP)	03-29-038-25W4M	Taylor Management Company Inc.	7 066	329	868
Atim* (Villeneuve)	08-05-054-26W4M	ATCO Midstream Ltd.	1 133	964	0
Total			400 219	182 702	25 101

Table S6.1 Straddle plants in Alberta, 2012

* These plants are approved to recover a C2+ mix and not specification ethane.

In 2012, ethane volumes extracted at Alberta processing facilities decreased 3.3 per cent to 34.0 thousand (10³) m^3/d from 35.2 10³ m^3/d in 2011. About 70 per cent of total ethane in the gas stream was extracted in 2012, while the remainder was left in the gas stream and sold for its heating value. **Table S6.2** shows the volumes of specification ethane extracted at the three types of processing facilities during 2012. This table excludes less than 0.1 10³ m^3/d of ethane produced from off-gas in 2012.

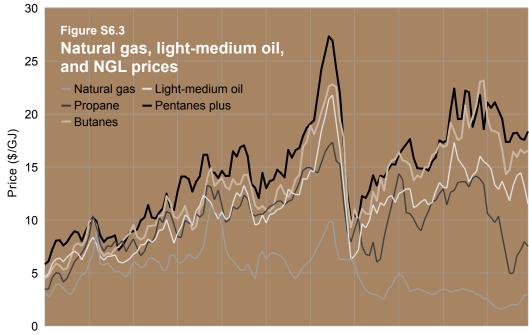

Gas plants	Volume (10 ³ m³/d)	Percentage of total
Field plants	2.2	6
Fractionation plants	6.7	20
Straddle plants	25.1	74
Total	34.0	100

Table S6.2 Ethane extraction volumes at gas plants in Alberta, 2012

The C_2^+ mix NGLs shipped from British Columbia to the Redwater fractionation plant for fractionation into specification products are included in Alberta production volumes.

Propane production increased by 4.8 per cent in 2012 to 22.6 10^3 m³/d, compared with a 0.5 per cent decrease in 2011. Butanes and pentanes plus declined by 0.7 per cent and 2.8 per cent, respectively, in 2012 over 2011. In 2012, 12.0 10^3 m³/d of butanes and 19.1 10^3 m³/d of pentanes plus were produced.

Figure S6.3 shows the historical natural gas and liquids prices in Canadian dollars per gigajoule (\$/GJ). The figure shows that propane, butanes, and pentanes plus prices follow the light/medium crude oil price.

Jan-02 Jan-03 Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09 Jan-10 Jan-11 Jan-12 Dec-12

In 2012, gas production from PSAC Area 2 (Foothills Front) held steady, whereas gas production decreased in all the other PSAC areas. This area has the largest remaining extractable liquids reserves in the province. Production from PSAC Area 3 (Southeastern Alberta), known for its dry gas production, experienced a 14 per cent decrease in production. Overall, conventional gas production in the province decreased by 5.3 per cent. The shift by industry to develop pools with gas liquids is expected to continue over the forecast period.

6.2.2 Ethane and Other Natural Gas Liquids – Recent Developments

As conventional gas production declines, less ethane will be available for use by the petrochemical sector. To address the tight supply of ethane in Alberta, the provincial government implemented the Incremental Ethane Extraction Policy (IEEP) in September 2006 and amended and extended the program in March 2011. The program, initially designed to encourage extraction of ethane from natural gas, has been revised to also encourage ethane extraction from off-gases that result from bitumen upgrading or refining. Alberta's petrochemical industry is the largest in Canada and depends on the availability of competitively priced ethane to remain viable. The capture of ethane from oil sands off-gases are part of the additional sources of ethane feedstock. Most off-gas is currently consumed as fuel in oil sands operations.

IEEP is in effect until December 31, 2016. Fractionation credits are provided to petrochemical companies that consume incremental ethane for value-added upgrading, in Alberta, to ethylene and derivatives. The credit value for ethane or ethylene from natural gas remains unchanged at \$1.80 per barrel (bbl). The government program recognizes that capture of off-gas from bitumen upgrading or refining, including ethane or ethylene, is considerably more capital intensive than conventional-sourced ethane and, as a result, provides a credit value for off-gas ethane of \$5.00/bbl. The credit is owned by the company that consumes the ethane or ethylene and can be sold to either a natural gas or bitumen royalty payer to be applied against its royalty obligation.

Seven IEEP projects have been approved to date, one project is under review by the provincial government, and eight new projects were submitted by the petrochemical companies in 2012. The latter represents a significant increase compared with the four projects submitted in 2011. The 2012 IEEP projects are described in **Table S6.3**.

Williams Companies Inc. (Williams) receives a large portion of the off-gas produced at Suncor's upgrading facility in the Fort McMurray area and extracts C_3 + mix NGLs and olefins at its Fort McMurray liquids extraction plant. NGLs and olefins production was 2054 m³/d in 2012, up from 1853 m³/d in 2011. Williams then sends the liquid mix from Fort McMurray to its Redwater fractionation plant near Edmonton through the Boreal Pipeline, which started operating in June 2012.

The 12-inch Boreal Pipeline, owned and operated by Williams, currently has the capacity to ship 6795 m³/d of off-gas liquids and will have the potential to transport up to 19 750 m³/d with the construction of additional pump stations. Williams entered into a long-term agreement with Canadian Natural Resources Ltd. (CNRL) to capture the off-gas produced from the upgrader at CNRL's Horizon project and to extract up to 2384 m³/d of NGLs and olefins by 2018. Williams will extend the Boreal Pipeline to the proposed liquids extraction plant adjacent to CNRL's upgrader to transport NGLs and olefins to the Redwater fractionation plant.

Feedstock Type	Date approved	Project name	Company	Submission year
Conventional	April 14, 2008	Empress V Deep Cut - IPF/Dow	Dow	2008
Conventional	April 14, 2008	Rimbey Ethane Extraction - Keyera/Dow	Dow	2008
Conventional	Sept 14, 2010	Hidden Lake Streaming - TCPL/NOVA	Nova	2010
Off-gas	Sept 14, 2010	Williams Off-Gas Ethane Extraction	Nova	2010
Conventional	Dec 7, 2011	Musreau Deep Cut	Dow	2011
Conventional	July 26, 2011	Shell Waterton Incremental NGL Recovery	Shell	2011
Off-gas	July 26, 2011	Scotford Fuel Gas Recovery (Refinery)	Shell	2011
Conventional	Under review	Harmattan Plant Costream	Nova	2011
Conventional	Newly submitted	Shell Jumping Pound	Shell	2012
Off-gas	Newly submitted	Shell Scotford Upgrader Off-Gas	Shell	2012
Off-gas	Newly submitted	Williams Off-Gas Ethane Extraction (incremental)	Nova	2012
Conventional	Newly submitted	AltaGas-Gordondale Deep Cut	Nova	2012
Conventional	Newly submitted	Judy Creek Ethane Extraction	Nova	2012
Conventional	Newly submitted	Resthaven Facility Phase 1	Dow	2012
Conventional	Newly submitted	Rimbey Turbo Expander	Dow	2012
Conventional	Newly submitted	Project Turbo (Saturn Plant)	Dow	2012

Table S6.3 IEEP projects as of December 31, 2012

Source: Alberta Department of Energy.

The Boreal Pipeline will start shipping C_2 + mix NGLs and olefins once ethane and ethylene fractionation capacity is added at Williams' Redwater fractionation plant. Ethane and ethylene fractionation is designed to produce up to 2702 m³/d of ethane and ethylene and is expected to start in mid-2013.

The Aux Sable Heartland off-gas processing plant started operating in September 2011. This processing plant receives off-gas from the Shell Scotford upgrader and refinery and extracts ethane, a C_3 + mix, and hydrogen. Total liquids production was 55 m³/d in 2012. The ethane is shipped on the Alberta Ethane Gathering System to meet petrochemical demand. The C_3 + mix and hydrogen is shipped back to Shell's facilities for their refining operations.

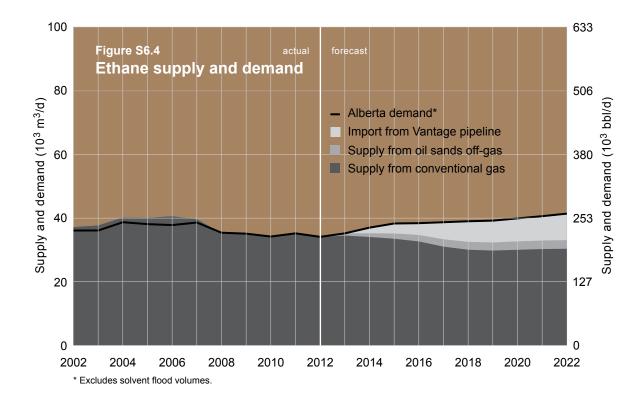
Nova Chemicals signed a deal with Hess Corporation to purchase and transport ethane produced at the Tioga gas plant in North Dakota via a new pipeline to Alberta. The Vantage Pipeline, approved by the National Energy Board (NEB) in January 2012, is expected to start up in 2013. The pipeline will have a capacity of 6300 m³/d, which could be expanded to 9500 m³/d with the addition of two additional pump stations.

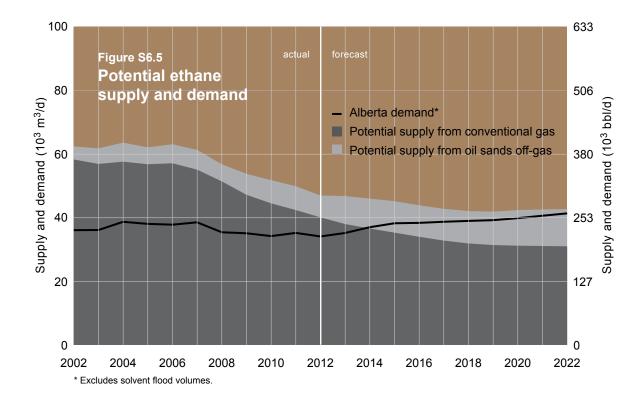
As more producers are focusing on the liquids-rich natural gas plays, midstream companies are either building new liquids extraction facilities or expanding their existing extraction capacities. Altagas Ltd.'s new deep-cut natural gas processing facility in the Gordondale area came on stream in October 2012. This deep-cut facility is capable of processing Montney liquids-rich gas and recovering up to 477 m³/d of C₂+ mix.

A deep-cut facility at Musreau gas processing plant operated by Pembina Pipeline Corporation (Pembina) started operating in February 2012, and the expansion of its shallow-cut facility at this site came on stream in September 2012. The aggregate processing capacity is now up to 11 553 10³ m³/d of natural gas and 2066 m³/d of C₂+ mix.

Pembina's Resthaven and Saturn projects are also underway. The Saturn deep-cut plant is designed to produce up to 2145 m³/d of C_2 + mix NGLs, and it is expected to be in service in late 2013. The Resthaven project is to develop a combined shallow-cut and deep-cut facility at an existing gas processing plant. Pembina expects this facility to be in service in 2014. Once operational, the total plant capacity will be 2066 m³/d, with the potential of up to 2861 m³/d of C_2 + mix.

In response to the anticipated increase in liquids-rich natural gas production, Pembina is also undertaking several pipeline expansion projects. The Phase 1 NGL Expansion, announced in November 2011, will increase Pembina's Peace and Northern NGL Pipeline Systems by 8264 m³/d, or up to 26 542 m³/d, in 2013. The Phase 2 NGL Expansion, announced in November 2012, will add 8423 m³/d of capacity to its Northern NGL Pipeline System by mid-2015.


Keyera Corp. (Keyera) is targeting 2014 to complete the addition of 4768 m³/d of de-ethanization capacity to accept C_2 + mix NGLs at its Fort Saskatchewan fractionation plant. Keyera's de-ethanizer will be the third facility to fractionate C_2 + mix of conventional NGLs in Fort Saskatchewan area.


6.2.3 Ethane and Other Natural Gas Liquids Production – Forecast

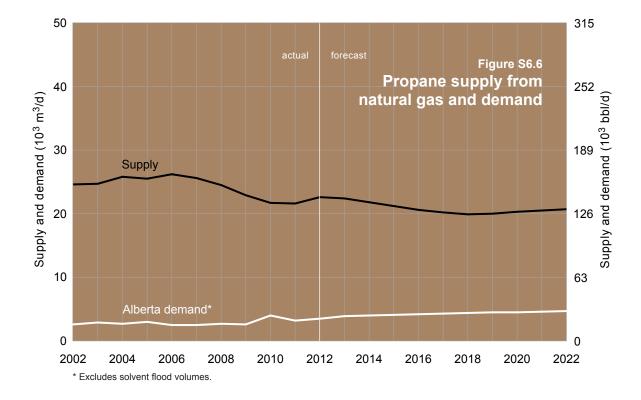
The ERCB expects that the Alberta ethane supply will gradually increase over the next two years. New ethane supplies are expected to come from liquids-rich natural gas supplies and from oil sands off-gas. As discussed, gas producers are focusing on the liquids-rich gas stream with higher ethane content, and the midstream companies have announced a number of projects to maximize liquids recovery.

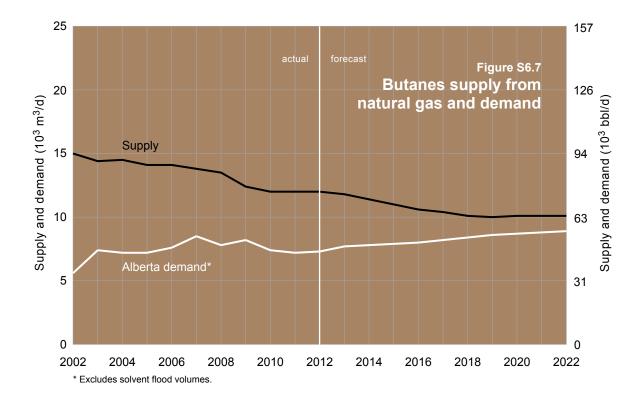
Figure S6.4 shows the ERCB's ethane supply and demand forecast. The ERCB expects ethane production from conventional gas to increase from 34.0 10³ m³/d in 2012 to 34.5 10³ m³/d in 2013. This is because fractionation and ethylene production capacities were reduced in 2012 due to maintenance work; demand is expected to recover in 2013. Ethane production from conventional gas, however, will continue to decline until 2019, then slightly recover for the rest of the forecast period as liquids-rich gas production from PSAC Area 2 and PSAC Area 7 (Northwestern Alberta) is also expected to start increasing in 2019. Small volumes of ethane were produced from off-gas in 2012, and the ERCB expects the ethane from off-gas to continue to grow gradually over the forecast period.

Figure S6.5 shows the potential ethane supply from conventional natural gas and the potential ethane volumes that could be recovered from oil sands off-gas production. The ethane supply volumes from conventional natural gas are calculated based on the volume-weighted average ethane content of conventional gas in Alberta of 0.052 mol/mol and the assumption that 80 per cent of ethane could be recovered at processing facilities. Current processing plant capacity for ethane is about 70 10³ m³/d and is not a constraint to recovering the additional volumes forecast. Potential ethane supply from oil sands off-gas is calculated assuming an average

ethane content of 16.2 per cent in the off-gas production volumes and an 80 per cent recovery rate of ethane. In 2022, 30.3 10^3 m³/d of ethane is expected to be produced out of a total potential of 31.0 10^3 m³/d of ethane from conventional gas, but only 2.7 10^3 m³/d of ethane out of a total potential of 11.7 10^3 m³/d of ethane from oil sands off-gas is projected to be extracted by 2022. As a result, the ERCB expects imports of ethane from the United States will start later in 2013 or in 2014 to augment supply, and these imports will continue to increase throughout the forecast period, reaching 8.3 10^3 m³/d in 2022.

Figures S6.4 to S6.7 show forecast production volumes to 2022 for ethane, propane, butanes, and pentanes plus.


6.2.4 Demand for Ethane and Other Natural Gas Liquids


The petrochemical industry in Alberta is the major consumer of ethane recovered from natural gas, with four ethylene plants using ethane as feedstock for the production of ethylene. The Joffre feedstock pipeline transports a range of feedstock from Fort Saskatchewan to Joffre. Currently small volumes of propane supplement the ethane supplies used at the petrochemical plants at Joffre, where three of the four plants are located. The fourth is in Fort Saskatchewan. The plants in the province that use ethane as a feedstock operated collectively at 72 per cent of their capacity in 2012. The industry adds value to NGLs by upgrading them to be used in the manufacture of products such as plastic, rope, and building materials.

The petrochemical industry in Alberta continues to benefit from the low gas price environment since the price of ethane, the primary feedstock for ethylene production, is linked to natural gas prices. The Alberta ethylene industry continues to maintain its historical cost advantage compared with a typical propane or naphtha cracking plant in the U.S. Gulf Coast, as prices of propane and other heavier gas liquids are linked to crude oil, which averaged US\$94.21/bbl West Texas Intermediate in 2012.

The recent development of liquids-rich shale gas plays in North America is providing opportunities for the petrochemical industry outside of Alberta to change their feedstock slate. Ethylene producers across the continent are shifting their feedstock from heavier feedstock such as naphtha and condensate to lighter NGLs, especially ethane, as more supplies become available. The U.S. ethylene production capacity could increase by 35 per cent in the next few years from the current level based on the announcements by the ethylene producers, and all of the new capacity is projected to use ethane as feedstock. Ethane provides a price advantage and generally yields higher margins than the other, heavier feedstocks. Despite these changes across North America, the Alberta feedstock advantage over the other regions in North America is expected to continue over the forecast period mainly because Alberta ethane has been and will continue to be priced lower than the U.S. Gulf Coast, where the majority of the U.S. ethylene production capacity is located.

The ERCB expects that ethane demand by the ethylene producers in the province will increase for the next few years, judging by the continued investment in Alberta infrastructure such as extraction facilities and pipelines, as well as projects to expand polyethylene and ethylene glycol production. As shown in **Figure S6.4** and **Figure S6.5**, Alberta demand for ethane is projected to gradually increase from the 2012 level of 34.1 10³ m³/d to 41.4 10³ m³/d in 2022.

For the purpose of this forecast, it is assumed that the existing ethylene plants will increase their throughput from 72 per cent to 88 per cent of capacity in 2022, and that no new ethylene plants requiring ethane as feedstock will be built in Alberta over the forecast period.

Historically, small volumes of ethane were exported from the province, primarily for use as a buffer for pipeline ethylene shipments to eastern Canada. Since 2008 and the end of ethylene deliveries to Ontario in the Cochin pipeline, however, there have been no ethane removals from the province, and this is expected to remain the case over the forecast period.

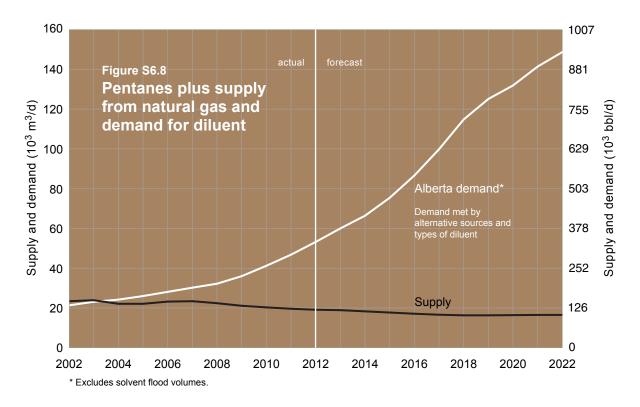
Demand for NGL mix streams in the form of C_2^+ mix and C_3^+ mix exists in Alberta as solvent for injection into enhanced oil recovery (EOR) schemes for conventional oil fields. Most of the NGL mix solvent is extracted at deep-cut facilities located adjacent to the injection facilities. Historically, small volumes of specification ethane were also delivered from Fort Saskatchewan to be used for injection at EOR schemes. In 2012, the ethane volumes in the solvent used for this purpose were equivalent to 3 per cent of total ethane demand in Alberta. Propane and butanes injected as solvent were equivalent to 27 per cent and 6 per cent of the provincial total demand for the products, respectively. Small volumes of pentanes plus were injected as solvent in 2012. The ERCB expects that the demand for NGL mix volumes for injection will remain unchanged over the forecast period. The supply and demand figures in this section exclude solvent flood volumes for fields producing conventional oil.

Figure S6.6 shows Alberta's demand for propane compared with the total available supply from gas processing and straddle plants. The difference between Alberta requirements and total supply represents volumes used by ex-Alberta markets. Propane is used primarily as a fuel in remote areas for space and water heating, as an alternative fuel in motor vehicles, and for barbecues and grain drying. Alberta propane demand is forecast to grow by an average of 3.1 per cent over the forecast period. This is significantly higher than the 1.8 per cent in last year's forecast because propane demand by petrochemical sector has grown in recent years, and it is expected to continue to grow moderately over the forecast period.

Figure S6.7 shows Alberta demand for butanes compared with the total available supply from gas processing plants. As with propane, the difference between Alberta butane requirements and total supply represents volumes used by markets outside of Alberta. Butanes are used as refinery feedstock, as well as in gasoline blends as an octane enhancer. The other petrochemical consumer of butanes in Alberta is a plant that uses butanes to produce vinyl acetate.

In recent years, butanes have been blended with conventional light/medium crude oil to benefit from the higher price of crude oil. Alberta producers and shippers are also blending butanes with crude oil to reduce the viscosity of the crude oil to minimize the penalties under the pipeline equalization process.

Butanes are also used as diluent (to reduce viscosity) and blended with heavy crude oil and bitumen to facilitate pipeline transportation of the product to market. In 2012, Alberta demand, excluding solvent flood demand, was 7.3 10³ m³/d, compared with 7.2 10³ m³/d for 2011. Alberta demand for butanes over the forecast period is expected to increase as nonupgraded bitumen and conventional heavy oil production increase. Another potential


growth in demand for butanes is the increasing use for the solvent aided process (SAP). SAP is a process whereby in-situ bitumen producers inject butanes as a solvent to enhance, along with steam-assisted gravity drainage (SAGD), bitumen recovery.

The largest use of Alberta pentanes plus is as diluent in the blending of heavy crude oil and bitumen. **Figure S6.8** shows the ERCB estimate of Alberta demand for pentanes plus used for diluent compared with the total available supply. Pentanes plus is also used as feedstock for the refinery in Lloydminster; this small volume (0.9 10^3 m³/d in 2012) is not included in the figure. Pentanes plus demand is estimated based on assumed blending factors and heavy oil and bitumen production.

Demand for pentanes plus is expected to remain strong due to continued high diluent requirements. As a result, pentanes plus demand as diluent is forecast to increase from $53.2 \ 10^3 \ m^3/d$ in 2012 to $148.7 \ 10^3 \ m^3/d$ in 2022.

As illustrated in **Figure S6.8**, diluent demand is estimated to have exceeded Alberta supply around 2004. The current estimated demand reflects the inadequate Alberta supply of pentanes plus since 2004, which has resulted in the assessment and use of alternative sources (imports) and types of diluent. Alberta currently imports offshore condensate by rail from Kitimat, British Columbia.

Alberta imports of pentanes plus are expected to increase over the next 10 years with growing oil sands demand. The following list outlines current and future sources of diluent from outside Alberta that will be needed to facilitate transportation of nonupgraded bitumen to markets.

- Alberta imports pentanes plus on trucks, rail cars, and pipelines, including Enbridge Inc.'s Southern Lights Pipeline, which transports diluent from Chicago to Edmonton and has a capacity to deliver 28.6 10³ m³/d.
- Enbridge is proposing to build a condensate pipeline capable of initially transporting 23.8 10³ m³/d of offshore condensate from Kitimat to Edmonton.
- Kinder Morgan Energy Partners, L.P., is proposing to reverse the western leg of the Cochin Pipeline to supply condensate from Kankakee County, Illinois, to Fort Saskatchewan, with a capacity of 15.1 10³ m³/d.

HIGHLIGHTS

Remaining established sulphur reserves decreased 30.2 per cent mainly due to the deletion of sulphur reserves from two mining projects.

Sulphur production from gas processing declined 18.5 per cent from 2011 to 2012, while sulphur production from crude bitumen increased by 11 per cent.

Total sulphur production fell from 4.7 million tonnes in 2011 to 4.4 million tonnes in 2012.

SULPHUR

7

Sulphur is a chemical element found in conventional natural gas, crude bitumen, and crude oil. The sulphur is extracted and sold primarily for use in making fertilizer. Currently, most produced sulphur is derived from the hydrogen sulphide (H_2S) contained in about 20 per cent of the remaining established reserves of conventional natural gas.

7.1 Reserves of Sulphur

7.1.1 Provincial Summary

The ERCB estimates the remaining established reserves of elemental sulphur in the province as of December 31, 2012, to be 120.9 million tonnes (10⁶ t), down 30 per cent from 2011. This significant decrease is mainly due to the reduction in sulphur reserves derived from crude bitumen reserves under active development, as detailed in **Section 7.1.4**. **Table R7.1** shows the changes in sulphur reserves over the past year. The ERCB does not estimate sulphur reserves from sour crude oil since only a very small portion of Alberta's sour crude oil is refined in the province.

7.1.2 Sulphur from Natural Gas

The ERCB estimates that there are 20.8 10⁶ t of remaining established sulphur from natural gas reserves in sour gas pools at year-end 2012, a decrease of 0.5 per cent from 2011. Remaining established sulphur reserves have been calculated using a provincial recovery factor of 97 per cent, which takes into account plant efficiency, acid-gas flaring at plants, acid-gas injection, and solution-gas flaring.

The ERCB's sulphur reserve estimates from natural gas are shown in **Table R7.2**. Fields containing the largest recoverable sulphur reserves are listed individually. Fields with significant volumes of sulphur reserves in 2012 are Caroline, Crossfield East, Okotoks, and Waterton. Combined, these account for 6.3 10⁶ t, or 30 per cent, of the remaining established reserves of sulphur from natural gas.

The ERCB estimates the ultimate potential for sulphur from natural gas to be 394.8 10^6 t, which includes 40 10^6 t from pools with ultrahigh concentrations of H₂S currently not on production. Based on initial established reserves of 272.8 10^6 t, this leaves 122.0 10^6 t of yet-to-be-established reserves from future discoveries of conventional gas.

	2012	2011	Change ^a
Initial established reserves from			
Natural gas	272.8	270.5	+2.3
Crude bitumen ^b	128.4	178.5	-50.1
Total	401.2	449.0	-47.8
Cumulative production from			
Natural gas	252.0	249.6	+2.4
Crude bitumen	28.3	26.3	+2.0
Total	280.3	275.9	+4.4
Remaining established reserves from			
Natural gas	20.8	20.9	-0.1
Crude bitumen ^₅	100.1	152.2	-52.1
Total	120.9	173.1	-52.2
Annual production	4.4	4.8	-0.4

Table R7.1 Reserve and production change highlights (10⁶ tonnes)

^a Any discrepancies are due to rounding.

^b Reserves of elemental sulphur from bitumen mines under active development as of December 31, 2012. Reserves from the entire surface mineable area are larger.

7.1.3 Sulphur from Crude Bitumen

Crude bitumen in oil sands deposits contains significant amounts of sulphur. As a result of current bitumen upgrading operations, an average of 90 per cent of the sulphur contained in the crude bitumen is either recovered in the form of elemental sulphur or remains in the by-products from upgrading bitumen, such as coke.

It is currently estimated that 213.8 10^6 t of sulphur could be recovered from the 5.28 billion cubic metres (10^9 m³) of remaining established crude bitumen reserves in the entire surface mineable area. These sulphur reserves were estimated by using a factor of 40.5 tonnes of sulphur per thousand cubic metres of crude bitumen. This ratio reflects both current operations and the expected use of high-conversion hydrogen-addition upgrading technology for the future development of surface-mineable crude bitumen reserves. Hydrogen-addition technology recovers more sulphur than alternative carbon-rejection technology. With the latter technology, more of the sulphur in the bitumen remains in upgrading residues and less is converted to H₂S.

If less of the mineable crude bitumen reserves are upgraded with the hydrogen-addition technology than is currently estimated, or if less of the mineable reserves are upgraded in Alberta, the total sulphur reserves will be less.

In 2012, the Nexen Long Lake upgrader continued to upgrade in situ bitumen, resulting in the production of small quantities of sulphur, most of which was not marketed. The ERCB will include in situ upgrading projects in future reports as they come on stream.

	Remaining reserves		Remaining established reserves of sulphur		
Field	of marketable gas (10 ⁶ m ³)	H ₂ S content ^b (%)	Gas (10 ⁶ m³)	Solid (10³ t)	
Benjamin	3 122	5.0	185	251	
Bighorn	2 782	6.8	227	308	
Brazeau River	8 572	3.7	377	511	
Burnt Timber	1 089	17.8	284	385	
Caroline	5 464	12.6	930	1 262	
Coleman	747	26.6	296	402	
Crossfield	2 487	17.3	659	894	
Crossfield East	2 022	28.3	996	1 350	
Elmworth	20 903	1.4	325	441	
Hanlan	6 320	8.9	748	1 014	
Jumping Pound West	3 635	6.7	304	412	
Kaybob South	15 229	1.0	168	227	
La Glace	2 227	6.4	165	223	
Limestone	3 399	12.5	573	777	
Lone Pine Creek	1 609	8.2	163	221	
Marsh	930	15.7	196	266	
Moose	2 343	12.8	389	527	
Okotoks	1 608	31.8	938	1 271	
Panther River	2 278	5.3	149	203	
Pembina	24 021	0.7	246	333	
Pine Creek	7 727	4.1	363	492	
Quirk Creek	1 264	9.3	157	213	
Rainbow	8 959	2.0	246	334	
Rainbow South	2 679	6.4	253	342	
Ricinus	4 119	3.7	173	234	
Ricinus West	1 062	32.3	596	808	
Simonette	2 550	9.0	333	451	
Waterton	5 132	21.6	1 775	2 407	
Wimborne	1 616	9.2	178	242	
Windfall	1 655	12.9	303	410	
Subtotal	147 550	6.7	12 691	17 211	
All other fields	768 133	0.3	2 637	3 595	
Total	915 683	1.5	15 329	20 806	

Table R7.2	Remaining established r	eserves of sulphur from natural	gas as of December 31, 2012 ^a

^a Any discrepancies are due to rounding.

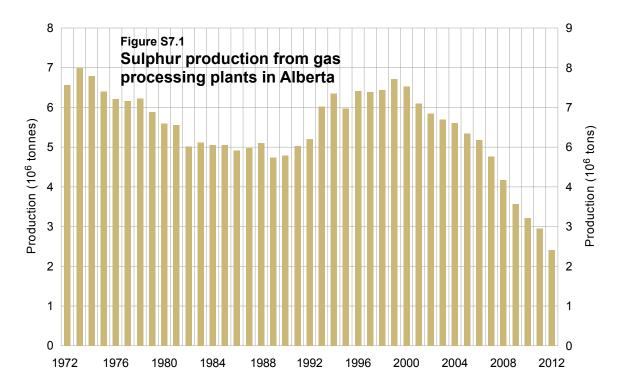
^b Volume-weighted average.

7.1.4 Sulphur from Crude Bitumen Reserves under Active Development

Only some of the production from established surface-mineable crude bitumen reserves will be upgraded by the existing Suncor, Syncrude, Shell Muskeg River, Shell Jackpine, and CNRL Horizon mining projects. The ERCB's estimate of the initial established sulphur reserves in 2012 from these active projects is 128.4 10⁶ t, representing 60 per cent of estimated recoverable sulphur from the remaining established crude bitumen in the total surface mineable area. A total of 28.3 10⁶ t of sulphur has been produced from these projects, leaving 100.1 10⁶ t of remaining established reserves. This is a decrease of 34 per cent from the remaining reserves in 2011. This large decrease in remaining reserves is due primarily to the deletion of the sulphur reserves attributed to the Kearl and Fort Hills mining projects, as well as to the production of 2.0 10⁶ t of sulphur in 2012. The sulphur reserves for Kearl were removed as an upgrader has not yet been built. The sulphur reserves for Fort Hills were removed because the project is not yet producing. The Joslyn North mining project was added to the crude bitumen reserves under active development in 2012, but sulphur reserves have not been included for this project as, similar to Fort Hills, it is not yet producing. Once these three projects report crude bitumen production to an upgrader, their accompanying sulphur reserves will be included in this section.

7.2 Supply of and Demand for Sulphur

7.2.1 Sulphur Production – 2012

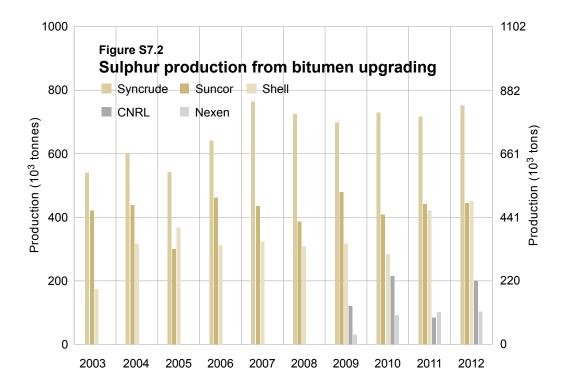

There are three sources of sulphur production in Alberta: sour natural gas processing, crude bitumen upgrading, and crude oil refining into petroleum products. In 2012, Alberta produced 4.37 10⁶ t of sulphur, of which 2.41 10⁶ t were derived from sour gas, 1.96 10⁶ t from bitumen upgrading, and just 19 thousand (10³) t from oil refining. The total sulphur production in 2012 represents a decrease of 7.6 per cent from the 2011 level due to a decline in natural gas production and lower sulphur content in the gas stream. Most of Canada's sulphur is produced in Alberta.

7.2.1.1 Sulphur Production from Natural Gas

Figure S7.1 shows historical sulphur production from gas processing plants. Sulphur production volumes are a function of raw gas production, sulphur content, and gas plant recovery efficiencies. As conventional sour gas production declines, less sulphur will be recovered from gas processing plants. This trend is evident in the steep decline in sulphur production from gas processing plants since 2000.

Table S7.1 shows the changes in sulphur production from major gas processing plants over the past year. In early 2011, declining gas reserves led to the planned closure of the Nexen Balzac gas plant. The plant and sour gas wells tied in to the facility were shut down at the end of April 2011. The Shell Caroline gas plant had a major turnaround in 2012, which resulted in significantly lower gas production.

Sulphur stockpiles stored as solid blocks at gas processing plants have been drawn down significantly in recent years as the result of an increase in global sulphur demand. **Figure 14** in the Overview section illustrates historical sulphur closing inventories at gas processing plants and oil sands operations, as well as sulphur prices.


Inventory blocks of sulphur at gas processing plants in Alberta were 1.46 10⁶ t at year-end 2012, down from 1.88 10⁶ t at year-end 2011 and 2.47 10⁶ t in 2010.

7.2.1.2 Sulphur Production from Crude Bitumen Upgrading

Historical sulphur production from the five oil sands upgrader operations is shown in **Figure S7.2**. Total production in 2012 was 1.96 10⁶ t, up 11 per cent from 2011 production of 1.77 10⁶ t. All of the crude bitumen upgraders experienced increases in sulphur production.

Major plants	2012	2011	Change	Per cent change
Shell Caroline	498	583	-85	-15
Shell Waterton	280	416	-136	-33
Husky Strachan	257	303	-46	-15
Shell Jumping Pound	186	180	6	3
Semcams Kaybob South	67	153	-86	-56
Keyera Strachan	132	185	-53	-29
Suncor Hanlan	131	138	-7	-5
Shell Burnt Timber	119	138	-19	-14
Nexen Balzac	0	25	-25	-100
Total	1670	2121	-451	-21

 Table S7.1
 Sulphur production from gas processing plants (10³ tonnes)

7.2.2 Sulphur Production – Forecast

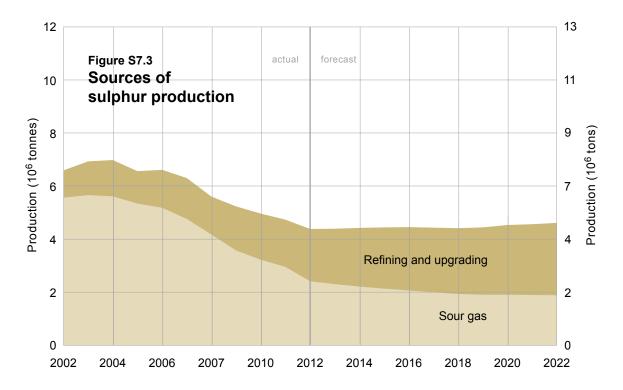
Total Alberta sulphur production from sour gas, crude oil, and bitumen upgrading and refining is depicted in **Figure S7.3**. Sulphur production from sour gas is expected to decrease from 2.41 10⁶ t in 2012 to 1.88 10⁶ t— about 22 per cent—by the end of the forecast period; however, sulphur recovery from bitumen upgrading and refining is expected to increase from 1.97 10⁶ t in 2012 to 2.73 10⁶ t (about 39 per cent). The large increase in sulphur from bitumen upgrading in 2012 reflects resumption of operations by CNRL following a fire at the Horizon upgrader in 2011 and the increase in production from Shell's Scotford upgrader expansion as it continues to ramp up. The sulphur production forecast takes into account the return of Suncor, Syncrude, and CNRL to upgraded bitumen production targets following disruptions at their respective facilities in early 2012.

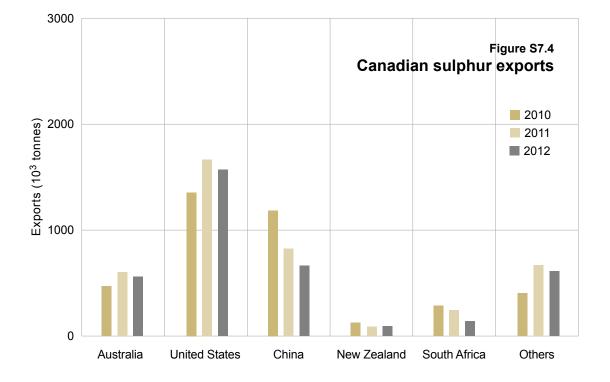
Sulphur recovery from Alberta refineries was at its highest since 2003, with a production level of 19 10^3 t in 2012. The forecast remains unchanged at 17 10^3 t for the forecast period. The forecast is based on the assumption that Alberta refineries will continue to recover volumes of sulphur similar to what has been recovered historically.

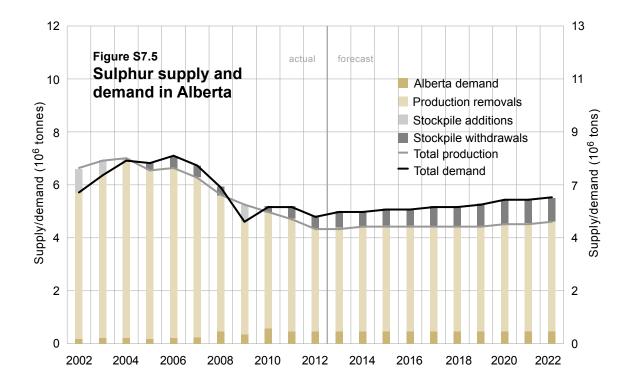
7.2.3 Sulphur Demand

Disposition of sulphur within Alberta averaged 460 10³ t per year between 2008 and 2010. More recent data on disposition of sulphur within the province may include Alberta plant-to-plant transfers, which are likely to cause the disposition volume to appear higher than actual. The ERCB considers the 2008–2010 average to be representative of 2011 and 2012 disposition and has also used that figure in the forecast period to 2022.

Sulphur is used in the production of phosphate fertilizer and kraft pulp and in other chemical operations. Alberta produces more sulphur than any other province in Canada, and the majority of Alberta production is shipped


outside the province. Canadian exports in 2012 were 3.7 10⁶ t, an 11 per cent decrease from 4.1 10⁶ t in 2011. **Figure S7.4** shows the historical Canadian export volumes.


In 2012, sulphur prices averaged US\$201 per tonne, declining 6 per cent from the previous year's average price of US\$214 per tonne.


China is the world's largest importer of sulphur, which is used primarily for making sulphuric acid to produce phosphate fertilizer. Exports to China have significantly decreased from 823 10³ t in 2011 to 665 10³ t in 2012. Nearly half of Canadian exports are sent to the United States: 1569 10³ t in 2012, down from 1667 10³ t in 2011.

Because sulphur is fairly easy to store, imbalances between production and disposition have traditionally been accommodated through net additions to or removals from sulphur stockpiles. If demand exceeds supply, sulphur is withdrawn from stockpiles; if supply exceeds demand, sulphur is added to stockpiles. **Figure S7.5** shows the historical and forecast total sulphur supply and demand, including inventory additions and withdrawals.

In the early part of the previous decade, weak global sulphur demand resulted in less demand for Alberta exports, and as a result, Alberta built a significant stockpile of sulphur. Since 2004, supply and demand have generally been in balance, with small withdrawals from inventory stockpiles. The forecast assumes that, on average, this situation will continue as declining production from natural gas processing plants is replaced by increasing sulphur recovery from bitumen upgrading. The forecast also assumes that demand will remain approximately constant in the first half of the forecast period and rise slightly in the second half.

HIGHLIGHTS

Remaining established reserves under active development decreased slightly in 2012 due to production but still represent decades of supply.

Overall coal production was 6 per cent lower tin 2012. While metallurgical bituminous coal production increased 15 per cent, thermal bituminous coal production decreased 16 per cent and subbituminous coal decreased 6 per cent, mainly as a result of weaker demand.

8 COAL

Coal is a combustible sedimentary rock with greater than 50 per cent organic matter. Coal occurs in many formations across central and southern Alberta, with lowerenergy-content coals in the plains region, shifting to higher-energy-content coals in the foothills and mountain regions.

Production of coal from mines is called raw coal. Some coal, particularly that from the mountain and foothills regions of Alberta, needs to be processed prior to marketing; this processed coal is referred to as clean coal. Clean coal (normally sold internationally) and raw coal from the plains region (normally sold within Alberta) are termed marketable coal. In this report, "reserves" refers to raw coal unless otherwise noted.

The possible commercial production of synthetic gas from coal (synthetic coal gas) in Alberta is still being investigated, and legislation is in place for regulating in situ coal gasification (ISCG) development. A discussion of ISCG is found in **Section 8.1.2.3**.

The following coal reserves and production information summarizes and nominally updates the material found in the ERCB serial publication *ST31: Reserves of Coal, Province of Alberta* (2000 edition). See that publication for more detailed information and a greater understanding of the parameters and procedures used to calculate established coal reserves.

8.1 Reserves of Coal

8.1.1 Provincial Summary

The ERCB estimates the remaining established reserves of all types of coal in Alberta as of December 31, 2012, to be 33.3 gigatonnes¹ (Gt) (36.7 billion tons). Of this amount, 22.7 Gt (or about 68 per cent) is considered recoverable by underground mining methods and 10.4 Gt is recoverable by surface mining methods. Of the total remaining established reserves, less than 1 per cent is within permit boundaries of mines active in 2012. **Table R8.1** gives a summary by rank of resources and reserves from 244 coal deposits.

Minor changes in remaining established reserves from December 31, 2011, to December 31, 2012, resulted from additions to cumulative production. During 2012,

¹ Giga = 10⁹.

Rank Classification	Initial in-place resources	Initial reserves	Cumulative production	Remaining reserves
Low- and medium-volatile bituminous ^b				
Surface	1.74	0.811	0.250	0.561
Underground	5.06	0.738	0.111	0.627
Subtotal	6.83°	1.56°	0.361	1.20°
High-volatile bituminous				
Surface	2.56	1.89	0.203	1.687
Underground	3.30	0.962	0.0470	0.915
Subtotal	5.90°	2.88°	0.250	2.63°
Subbituminous				
Surface	13.6	8.99	0.848	8.14
Underground	67.0	21.2	0.0680	21.1
Subtotal	80.7 °	30.3°	0.916	29.4
Total	93.7°	34.8 °	1.53°	33.3°

Table R8.1 Established initial in-place resources and remaining reserves of raw coal in Alberta as of December 31, 2012^a (Gt)

^a Tonnages have been rounded to three significant figures.

^b Includes minor amounts of semi-anthracite.

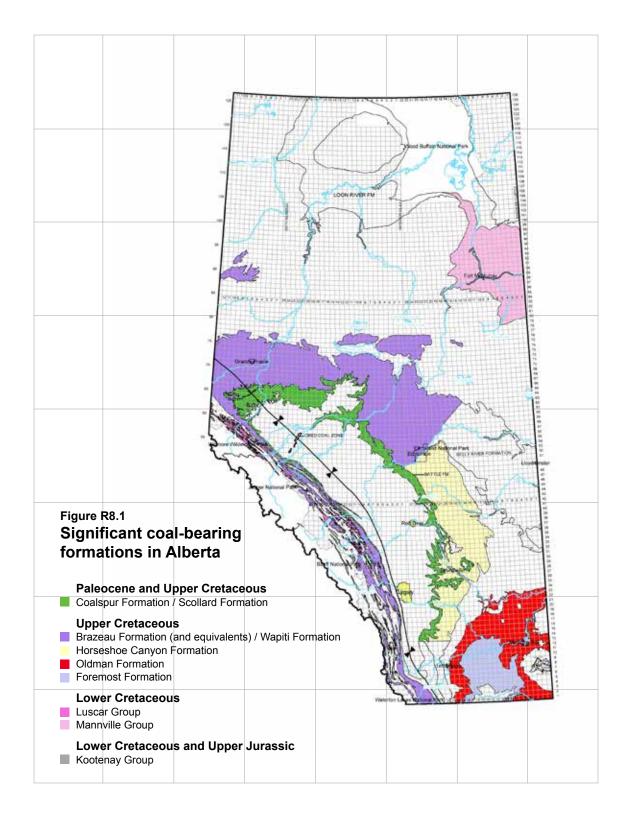
° Totals for resources and reserves are not arithmetic sums but are the result of separate determinations.

^d Includes minor lignite.

^e Any discrepancies are due to rounding.

the low- and medium-volatile bituminous, high-volatile bituminous, and subbituminous production tonnages were 0.005 Gt, 0.008 Gt, and 0.022 Gt, respectively.

8.1.2 In-Place Resources


There was no change to the in-place resource estimate over the previous year.

The ERCB estimates the initial in-place resource of coal to be 94 10^9 tonnes, of which the largest component, 81 10^9 tonnes, is the subbituminous coal of the plains region. Most of this subbituminous coal exists at depths greater than 60 metres (m), but less than 600 m.² There is significantly greater resource potential for coal, as mentioned in **Section 8.1.4**.

8.1.2.1 Geology and Coal Occurrence

Coal occurs extensively in Alberta through the nonmarine units of the sequence of Jurassic- to Paleocene-aged formations. The coal-bearing formations underlie about 300 000 square kilometres—almost half of Alberta. **Figure R8.1** shows the subcrops of most of the coal-bearing formations, and their equivalents, in Alberta.

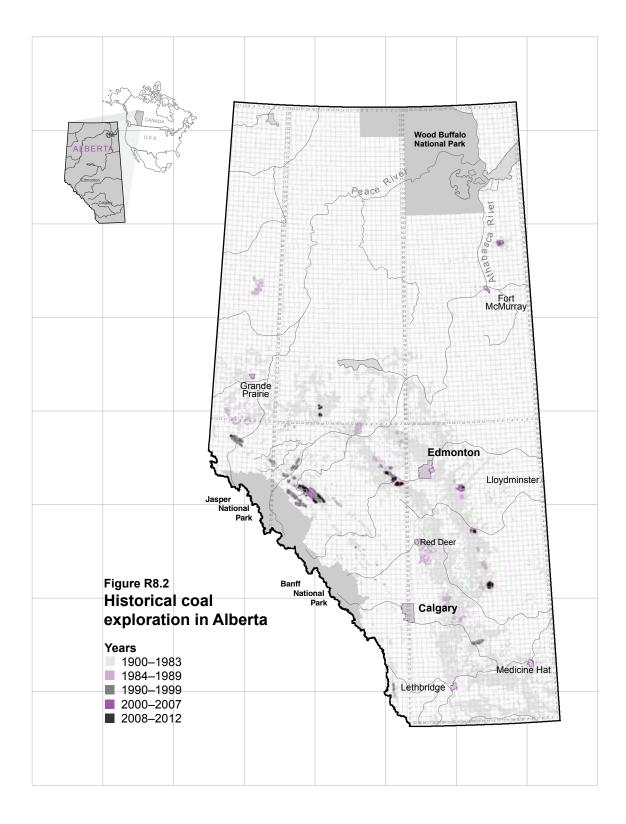
² Coal is known to exist below a depth of 600 m, but that is beyond what is considered potentially mineable.

Coal, with or without thin clastic layers called partings, occurs in layered accumulations called seams. Coal maturity, or rank, is measured on the basis of calorific value for lower-ranked coals and carbon content for higher-ranked coals. Coals of all rank groups, from lignite to semi-anthracite, occur in Alberta.

The ERCB has subdivided Alberta's coal-bearing regions into three designated regions (broadly shown in **Figure S8.1** in **Section 8.2.1**) based on rank, geology, and topography, so as to group coals by method of recovery and market. The mountain region exhibits complex geological structures and steep topography with higher-ranked coal amenable to export for metallurgical purposes. The foothills region exhibits moderately complex structures and hilly topography with moderate-ranked coals amenable to export for thermal purposes. The plains region is the largest and exhibits generally flat-lying seams and flat or incised plateau topography with lower-ranked coals amenable for domestic thermal purposes. The plains region contains about 88 per cent of Alberta's coal, most of which is subbituminous.

Figure R8.2 shows periods of exploration for coal in Alberta. Recent coal exploration has been predominately within areas for which mine permits have been issued by the ERCB. While very significant coal resources were identified from holes drilled in the 1970s and 1980s, very few areas, other than currently producing areas, have seen follow-up drilling due to lack of markets.

8.1.2.2 Coal Mineability


In general, shallow coal is mined more economically by surface than by underground methods and is classified as surface mineable. At some stage of increasing depth and strip ratio,³ the economic advantage passes to underground mining; this coal is considered underground mineable. The classification scheme used to differentiate between surface- and underground-mineable coal is very broadly based on depth and strip ratio and is designed to reflect relative costs, but it does not necessarily mean that the coal could be mined under the economic conditions prevailing today.

These classifications are used to categorize total coal in place. Further analysis is done to determine which portions of this coal may be developed and which portion of that coal may be recovered. Some in-place coal, such as underground thin seams, is unlikely to be developed by mining methods but is included in the total because of past production. Additionally, some of the coal currently classified as underground may become the target of commercial ISCG development. At such time, the ERCB will split the underground classification into mineable and in situ components.

8.1.2.3 In Situ Coal Gasification

There are two main types of coal gasification processes: ISCG and surface-facility gasification from mined coal. Surface-facility gasification processes conventionally mined coal, and those mineable coal reserves would be included in the tables above. Currently, however, there are no surface-gasification facilities in Alberta.

³ Strip ratio is the amount of overburden that must be removed to gain access to a unit amount of coal.

ISCG uses wellbores to access coal seams at depth. ISCG consists of thermal reduction of coal to simpler hydrocarbons that can be produced up a wellbore. Any ISCG-derived gas would, by its nature, incorporate any coalbed methane gas (see **Section 5**) contained within the targeted coals. Currently, ISCG synthetic coal gas is limited to a small quantity. Therefore, neither synthetic coal gas volumes nor their associated coal resource tonnages are yet included in this report. However, Alberta's vast quantities of coal could supply a large resource base should development prove commercial.

Two ISCG pilot projects have been approved but neither was operational in 2012. Future ISCG development may take place at depths below those currently assumed to be mineable.

8.1.3 Established Reserves

Several techniques, in particular geostatistical methods, have been used for calculating in-place volumes, with separate volumes calculated for surface- and underground-mineable coal. Certain parts of deposits are considered nonrecoverable for technical, environmental, or safety reasons, and therefore have no recoverable reserves. For the remaining areas, recovery factors have been determined for the surface-mineable coal and the thicker underground classes of coal seams.

A recovery factor of 90 per cent has been assigned to the remaining in-place surface-mineable area, followed by an additional small coal loss at the top and a small dilution at the bottom of each seam.

In the case of underground-mineable coal, geologically complex environments may make mining significant parts of some deposits uneconomic. Because there is seldom sufficient information to outline such areas, it is assumed that, in addition to the coal previously excluded, only a portion of the remaining deposit areas would be mined. Thus a "deposit factor" has been determined whereby, on average, only 50 per cent of the remaining deposit area is considered to be mineable in the mountain region, 70 per cent in the foothills, and 90 per cent in the plains—the three regions in Alberta designated by the ERCB where coals of similar quality and mineability are recovered.

A mining recovery factor of 75 per cent is then applied to both medium (1.5 to 3.6 m) and thick (>3.6 m) seams, with a maximum recoverable thickness of 3.6 m applied to thick seams. Thin seams (0.6 to <1.5 m) are not currently considered recoverable by underground methods.

Table R8.2 shows the established resources and reserves within the current permit boundaries of those mines active (either producing or under construction) in 2012. In 2011, a new operator acquired a portion of the inactive McLeod River mine permit and filed an application to produce coal. A second application, by a different operator, for a new mine permit on the same geological trend was received in 2012. These mine projects will be included in Table R8.2 once production or significant construction starts. In 2012, the Vesta mine was incorporated into the adjacent Paintearth mine.

8.1.4 Ultimate Potential

A large degree of uncertainty is associated with estimating an ultimate potential, and new data could substantially alter results. Two methods have been used to estimate the ultimate potential of coal: volumetric and trend analysis. The volumetric method gives a broad estimate of area, coal thickness, and recovery ratio for each coal-

Rank Mine	Permit area (ha)ª	Initial in-place resources (Mt) ^ь	Initial reserves (Mt)	Cumulative production (Mt)	Remaining reserves (Mt)
Low- and medium-volatile bituminous					
Cheviot	7 455	246	154	28	126
Grande Cache	4 250	199	85	35	50
Subtotal	11 705	445	239	63	176
High-volatile bituminous					
Coal Valley	17 865	572	331	159	172
Obed	7 590	162	137	46	91
Subtotal	25 455	734	468	205	264
Subbituminous					
Paintearth	5 120	163	121	102	19
Sheerness	7 000	196	150	91	59
Dodds	425	2.0	2.0	1.5	0.5
Burtonsville Island	150	0.5	0.5	0.2	0.3
Highvale	12 140	1 021	764	410	355
Genesee	7 320	250	176	90	86
Subtotal	32 155	1 633	1 214	694	519
Total	69 315	2 812	1 921	962	959

Table R8.2	Established resources and reserves of raw coal under active development as of December 31, 2012
------------	---

^a ha = hectares.

^b Mt = megatonnes; mega = 10⁶.

^c Any discrepancies are due to rounding.

bearing horizon, while the trend analysis method estimates the ultimate potential from the trend of initial reserves versus exploration effort.

To avoid large fluctuations in ultimate potential from year to year, the ERCB has adopted the policy of using the figures published in the 2000 edition of *ST31* and adjusting them slightly to reflect the most recent trends. **Table R8.3** gives quantities by rank for surface- and underground-mineable ultimate in- place resources, as well as the ultimate potential. No change to ultimate potential has been made for 2012.

8.2 Supply of and Demand for Marketable Coal

Alberta produces three types of marketable coal: subbituminous, metallurgical bituminous, and thermal bituminous. Subbituminous coal is mainly used for electricity generation in Alberta. Metallurgical bituminous coal is also exported and used for industrial applications, such as steel production. Thermal bituminous coal is also exported and used to fuel electricity generators in distant markets. The higher calorific content of thermal bituminous coal makes it possible to economically transport the coal over long distances. While subbituminous coal is burned without any form of upgrading, both types of export coal are sent in raw form to a preparation plant, whose output is referred to as clean coal. Subbituminous raw coal and clean bituminous coal are collectively known as marketable coal.

Coal rank		
Classification	Ultimate in-place	Ultimate potential
Low- and medium-volatile bituminous		
Surface	2.7	1.2
Underground	18	2.0
Subtotal	21	3.2
High-volatile bituminous		
Surface	10	7.5
Underground	490	150
Subtotal	500	160
Subbituminous		
Surface	14	9.3
Underground	1 400	460
Subtotal	1 500	470
Total	2 000 ^b	620

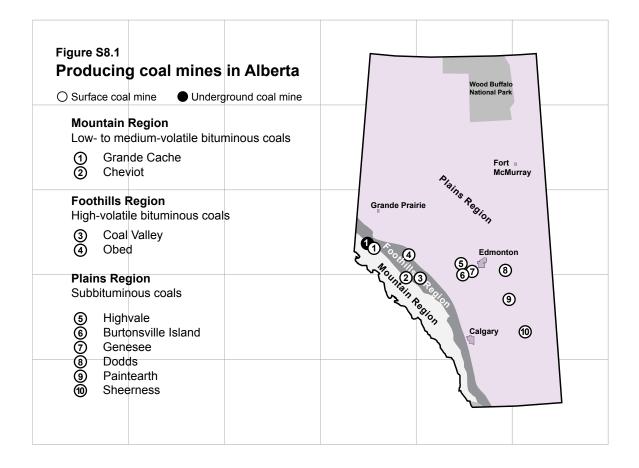
Table R8.3 Ultimate in-place resources and ultimate potential^a (Gt)

a Tonnages have been rounded to two significant figures, and totals are not arithmetic sums but are the result of separate determinations.

^b Work done by the Alberta Geological Survey suggests that the value is likely significantly larger.

8.2.1 Coal Production – 2012

The locations of coal mine sites in Alberta are shown in **Figure S8.1**. In 2012, ten mine sites produced coal in Alberta, as shown in **Table S8.1**.⁴ These mines produced 28.2 megatonnes (Mt) of marketable coal. Subbituminous coal accounted for 77 per cent of the total, metallurgical bituminous coal 10 per cent, and thermal bituminous coal the remaining 13 per cent. In 2012, while subbituminous and thermal bituminous coal production decreased by 6 and 16 per cent, respectively, metallurgical bituminous coal increased by 15 per cent relative to 2011. Overall, total marketable production of coal has decreased by 6 per cent, mainly due to weaker demand.


Six mines produce subbituminous coal. Most mines serve nearby electric power plants, while a few mines supply residential and commercial customers. Because of the need for long-term supply to power plants, most of the coal reserves are dedicated to the power plants.

Three surface mines and one mine with both surface and underground recovery produce the provincial supply of metallurgical and thermal grade coal.

8.2.2 Coal Production – Forecast

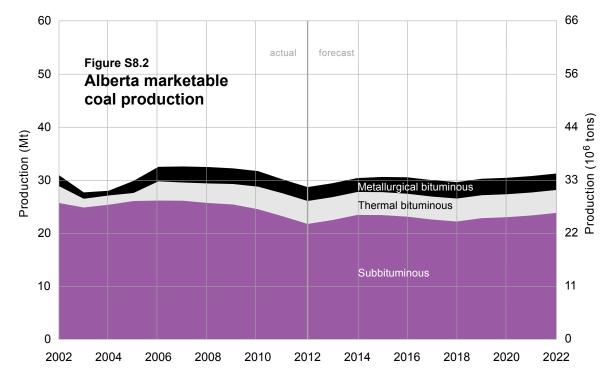
The projected production for each of the three types of marketable coal is shown in **Figure S8.2**. Total production is expected to increase over the forecast period by about 9 per cent, from 28.2 Mt in 2012 to 30.9 Mt in 2022. Subbituminous and metallurgical bituminous coal production is forecast to increase by 10 and 16 per cent,

⁴ With the merger of the Vesta and Paintearth mines in 2012, there are now ten producing mines sites in Alberta.

Table S8.1	Alberta coal mines and marketable coal production in 2012
------------	---

Owner (grouped by coal type)	Mine	Location	Production (Mt)
Subbituminous coal			
Sherritt International Corp.	Genesee	Genesee	4.8
	Sheerness	Sheerness	3.2
	Paintearth	Halkirk/Cordel	2.9
	Highvale	Wabamun	10.6
Dodds Coal Mining Co. Ltd.	Dodds	Ryley	0.08
Keephills Aggregate Ltd.	Burtonsville Island	Burtonsville Island	0.03
Subtotal		21.6	
Bituminous metallurgical coal			
Teck Resources Limited	Cheviot	Mountain Park	1.4
Grande Cache Coal Corp.	Grande Cache	Grande Cache	1.6
Subtotal		3.0	
Bituminous thermal coal			
Sherritt International Corp.	Coal Valley	Coal Valley	3.4
	Obed	Obed	0.2
Subtotal			3.6
Total			28.2

respectively, by 2022, while bituminous thermal coal production will remain flat. An increase in production of both metallurgical and export thermal coal is possible if proposed mines open within the forecast period.


8.2.3 Coal Demand

In Alberta, the subbituminous mines primarily serve coal-fired electricity generation plants, and the production from these mines can be affected by the commissioning and closures of power generation plants.

In 2012, the federal government issued new regulations for coal-fired plants that require all coal-fired power plants to either be retired by the end of their economic life (after 50 years of operation) or meet stringent emissions requirements. The new federal regulations come into effect in July 2015. The ERCB has considered this in forecasting the demand for coal.

Sundance Units 1 and 2, operated by TransAlta, have been out of service since December 2010. Following a hearing to determine the future of the plants, an arbitration panel ordered the units to be rebuilt and service restored. Based on this decision, both units are expected to be restored to service by fall 2013. The two units have been included in the ERCB's demand forecast starting in 2014. Also, the upgrades to increase the capacity of Keephills Units 1 and 2 by 23 megawatts were completed in 2012.

Alberta's metallurgical coal primarily serves the Asian steel industry, with Japan importing the most from Alberta. Japan also imports the most thermal coal from Alberta. The long distance required to transport coal from mine to port creates a competitive disadvantage for Alberta export-coal producers. However, the demand for metallurgical coal exports improved in 2012 from the 2011 level, and North American metallurgical coal is becoming more competitive. Australia, the world's largest metallurgical coal exporter, implemented taxes on mining profits and carbon emissions on July 1, 2012. Consequently, the ERCB expects a 16 per cent increase in Alberta metallurgical coal production over the forecast period.

Appendix A Terminology and Conversion Factors

A.1 Terminology	
Alberta Natural Gas Reference Price (ARP)	The Alberta Natural Gas Reference Price is a monthly weighted average field price of all Alberta gas sales, as determined by the Alberta Department of Energy through a survey of actual sales transactions. This price is used for royalty purposes.
API Gravity	A specific gravity scale developed by the American Petroleum Institute (API) for measuring the relative density or viscosity of various petroleum liquids.
Brent Blend (Brent)	Brent Blend is a grade of light sweet crude oil derived from a mix of 15 different oil fields in the North Sea. Brent blend futures are traded on the IntercontinentalExchange, Inc (ICE) and are considered a global benchmark for oil prices.
Burner-tip	The location where a fuel is used by a consumer.
Butanes	In addition to its normal scientific meaning, a mixture mainly of butanes that ordinarily may contain some propane or pentanes plus (<i>Oil and Gas Conservation Act</i> , Section 1(1)(c.1)).
Coalbed Methane	The naturally occurring dry, predominantly methane gas produced during the transformation of organic matter into coal.
Cogeneration Gas Plant	Gas-fired plant used to generate both electricity and steam.
Commingled	Commingled flow describes the production of fluid from two or more separate zones through a single conduit.
Compressibility FactorA correction factor for nonideal gas determined for gas from a pool at its initial reservoir pressure and temperature and, where necessary, including factors to correct for acid gases	
Condensate	A mixture mainly of pentanes and heavier hydrocarbons that may be contaminated with sulphur compounds and is recovered or is recoverable at a well from an underground reservoir. It may be gaseous in its virgin reservoir state but is liquid at the conditions under which its volume is measured or estimated (<i>Oil and Gas Conservation Act</i> , Section 1(1) (d.1)).
Connected Wells	Gas wells that are tied into facilities through a pipeline.
Crude Bitumen	A naturally occurring viscous mixture mainly of hydrocarbons heavier than pentane that may contain sulphur compounds and that in its naturally occurring viscous state will not flow to a well (<i>Oil Sands Conservation Act</i> , Section $1(1)(f)$).
Crude Oil (Conventional)	A mixture mainly of pentanes and heavier hydrocarbons that may be contaminated with sulphur compounds and is recovered or is recoverable at a well from an underground reservoir. It is liquid at the conditions under which its volume is measured or estimated and includes all other hydrocarbon mixtures so recovered or recoverable except raw gas, condensate, or crude bitumen (<i>Oil and Gas Conservation Act</i> , Section 1(1)(f.1)).
Crude Oil (Heavy)	Crude oil is deemed to be heavy crude oil if it has a density of 900 kg/m ³ or greater.
Crude Oil (Light-Medium)	Crude oil is deemed to be light-medium crude oil if it has a density of less than 900 kg/m ³ .
Crude Oil Netback	Crude oil netbacks are calculated from the price of WTI at Chicago less transportation and other charges to supply crude oil from the wellhead to the Chicago market. Alberta netback prices are adjusted for the U.S./Canadian dollar exchange rate, as well as crude quality differences.

Crude Oil (Synthetic)	A mixture mainly of pentanes and heavier hydrocarbons that may contain sulphur compounds and is derived from crude bitumen. It is liquid at the conditions under which its volume is measured or estimated and includes all other hydrocarbon mixtures so derived (<i>Oil and Gas Conservation Act</i> , Section 1(1)(t.1)).		
Datum Depth	The approximate average depth relative to sea level of the midpoint of an oil or gas productive zone for the wells in a pool.		
Decline Rate	The annual rate of decline in well productivity.		
Deep-cut Facilities	A gas plant adjacent to or within gas field plants that can extract ethane and other natural gas liquids using a turbo-expander.		
Density	The mass or amount of matter per unit volume.		
Density, Relative (Raw Gas)	The density relative to air of raw gas upon discovery, determined by an analysis of a gas sample representative of a pool under atmospheric conditions.		
Development Entities (DEs)	A development entity (DE) is an entity consisting of multiple formations in a specific area described in an order of the ERCB from which gas may be produced without segregation in the wellbore subject to certain criteria specified in Section 3.051 of the <i>Oil and Gas Conservation Regulations</i> (Order No. DE 2006-2).		
Diluent	Lighter viscosity petroleum products that are used to dilute crude bitumen for transportation in pipelines.		
Discovery Year	The year when drilling was completed of the well in which the oil or gas pool was discovered.		
Economic Strip Ratio	Ratio of waste (overburden material that covers mineable ore) to ore (in this report refers to coal or oil sands) used to define an economic limit below which it is economical to remove the overburden to recover the ore.		
Established Reserves	Those reserves recoverable under current technology and present and anticipated economic conditions specifically proved by drilling, testing, or production, plus the portion of contiguous recoverable reserves that are interpreted to exist from geological, geophysical, or similar information with reasonable certainty.		
Ethane	In addition to its normal scientific meaning, a mixture mainly of ethane that ordinarily may contain some methane or propane (<i>Oil and Gas Conservation Act</i> , Section 1(1)(h.1)).		
Extraction	The process of liberating hydrocarbons (propane, bitumen) from their source (raw gas, mined oil sands).		
Feedstock	In this report feedstock refers to raw material supplied to a refinery, oil sands upgrader, or petrochemical plant.		
Field	 (i) The general surface area or areas underlain or appearing to be underlain by one or more pools, or (ii) the subsurface regions vertically beneath a surface area or areas referred to in subclause (i) (<i>Oil and Gas Conservation Act</i>, Section T1T (x)). 		
Field Plant	A natural gas facility that processes raw gas and is located near the source of the gas upstream of the pipelines that move the gas to markets. These plants remove impurities, such as water and hydrogen sulphide, and may also extract natural gas liquids from the raw gas stream.		
Field Plant Gate	The point at which the gas exits the field plant and enters the pipeline.		
Field or Strike Area	An administrative geographical boundary used for grouping resource accumulation.		
Fractionation Plant	A processing facility that takes a natural gas liquids stream and separates out the component parts as specification products.		

Gas	Raw gas, marketable gas, or any constituent of raw gas, condensate, crude bitumen, or crude oil that is recovered in processing and is gaseous at the conditions under which its volume is measured or estimated (<i>Oil and Gas Conservation Act</i> , Section 1(1)(j.1)).
Gas (Associated)	Gas in a free state in communication in a reservoir with crude oil under initial reservoir conditions.
Gas (Marketable)	A mixture mainly of methane originating from raw gas or, if necessary, from the processing of the raw gas for the removal or partial removal of some constituents and that meets specifications for use as a domestic, commercial, or industrial fuel or as an industrial raw material (<i>Oil and Gas Conservation Act</i> , Section 1(1)(m)).
Gas (Marketable at 101.325 kPa and 15°C)	The equivalent volume of marketable gas at standard conditions.
Gas (Nonassociated)	Gas that is not in communication in a reservoir with an accumulation of liquid hydrocarbons at initial reservoir conditions.
Gas (Raw)	A mixture containing methane, other paraffinic hydrocarbons, nitrogen, carbon dioxide, hydrogen sulphide, helium, and minor impurities, or some of these components that is recovered or is recoverable at a well from an underground reservoir and is gaseous at the conditions under which its volume is measured or estimated (<i>Oil and Gas Conservation Act</i> , Section $1(1)(s.1)$).
Gas (Solution)	Gas that is dissolved in crude oil under reservoir conditions and evolves as a result of pressure and temperature changes.
Gas-Oil Ratio (Initial Solution)	The volume of gas (in cubic metres, measured under standard conditions) contained in one stock-tank cubic metre of oil under initial reservoir conditions.
Good Production Practice (GPP)	 Production from oil pools at a rate (i) not governed by a base allowable, but (ii) limited to what can be produced without adversely and significantly affecting conservation, the prevention of waste, or the opportunity of each owner in the pool to obtain its share of the production (<i>Oil and Gas Conservation Regulations</i> 1.020(2)9). This practice is authorized by the ERCB either to improve the economics of production from a pool and thus defer its abandonment or to avoid unnecessary administrative expense
Gross Heating	associated with regulation or production restrictions where this serves little or no purpose. The heat liberated by burning moisture-free gas at standard conditions and condensing the
Value (of Dry Gas)	water vapour to a liquid state.
Henry Hub Price	The Henry Hub is a distribution hub on a main natural gas pipeline system in the Untied States near Erath, Louisiana. It is the pricing point for natural gas futures contracts traded on the New York Mercantile Exchange (NYMEX).
Horizontal Well	A well in which the lower part of the wellbore is drilled parallel to the zone of interest.
Initial Established Reserves	Established reserves prior to the deduction of any production.
Initial Volume in Place	The volume or mass of crude oil, crude bitumen, raw natural gas, or coal calculated or interpreted to exist in the ground before any quantity has been produced.
Maximum Day Rate	The operating day rate for gas wells when they are first placed on production. The estimation of the maximum day rate requires the average hourly production rate. For each well, the annual production is divided by the hours that the well produced in that year to obtain the average hourly production for the year. This hourly rate is then multiplied by 24 hours to yield an estimate of a full-day operation of a well, which is referred to as maximum day rate.

Maximum Recoverable Thickness	The assumed maximum operational reach of underground coal mining equipment in a single seam.			
Mean Formation Depth	The approximate average depth below kelly bushing of the midpoint of an oil or gas productive zone for the wells in a pool.			
Methane	In addition to its normal scientific meaning, a mixture mainly of methane that ordinarily may contain some ethane, nitrogen, helium, or carbon dioxide (<i>Oil and Gas Conservation Act</i> , Section $1(1)(m.1)$).			
Multilateral Well	A well where two or more production holes, usually horizontal in direction with reference to the zone of interest, are drilled from a single surface location.			
Natural Gas Liquids	Ethane, propane, butanes, pentanes plus, or a combination of these obtained from the processing of raw gas or condensate.			
Off-gas	Natural gas that is produced from upgrading bitumen. This gas is typically rich in natural gas liquids and olefins.			
Oil	Condensate, crude oil, or a constituent of raw gas, condensate, or crude oil that is recovered in processing and is liquid at the conditions under which its volume is measured or estimated (<i>Oil and Gas Conservation Act</i> , Section $1(1)(n.1)$).			
Oil Sands	 (i) sands and other rock materials containing crude bitumen, (ii) the crude bitumen contained in those sands and other rock materials, and (iii) any other mineral substances other than natural gas in association with that crude bitumen or those sands and other rock materials referred to in subclauses (i) and (ii) (<i>Oil Sands Conservation Act</i>, Section l(l)(o)). 			
Oil Sands Deposit	A natural reservoir containing or appearing to contain an accumulation of oil sands separated or appearing to be separated from any other such accumulation (<i>Oil and Gas Conservation Act</i> , Section $1(1)(0.1)$).			
Overburden	In this report overburden is a mining term related to the thickness of material above a mineable occurrence of coal or bitumen.			
Pay Thickness (Average)	The bulk rock volume of a reservoir of oil, oil sands, or gas divided by its area.			
Pentanes Plus	A mixture mainly of pentanes and heavier hydrocarbons that ordinarily may contain some butanes and is obtained from the processing of raw gas, condensate, or crude oil (<i>Oil and</i> <i>Gas Conservation Act</i> , Section 1(1)(p)).			
Pool	A natural underground reservoir containing or appearing to contain an accumulation of oil or gas or both separated or appearing to be separated from any other such accumulation (<i>Oil and Gas Conservation Act</i> , Section $1(1)(q)$).			
Porosity	The effective pore space of the rock volume determined from core analysis and well log data measured as a fraction of rock volume.			
Pressure (Initial)	The reservoir pressure at the reference elevation of a pool upon discovery.			
Propane	In addition to its normal scientific meaning, a mixture mainly of propane that ordinarily may contain some ethane or butanes (<i>Oil and Gas Conservation Act</i> , Section $1(1)(s)$).			
Recovery (Enhanced)	The increased recovery from a pool achieved by artificial means or by the application of energy extrinsic to the pool. The artificial means or application includes pressuring, cycling, pressure maintenance, or injection to the pool of a substance or form of energy but does not include the injection in a well of a substance or form of energy for the sole purpose of (i) aiding in the lifting of fluids in the well, or (ii) stimulation of the reservoir at or near the well by mechanical, chemical, thermal, or explosive means (<i>Oil and Gas Conservation Act</i> , Section 1(1)(h)).			

Recovery (Pool)	In gas pools, the fraction of the in-place reserves of gas expected to be recovered under the subsisting recovery mechanism.
Recovery (Primary)	Recovery of oil by natural depletion processes only measured as a volume thus recovered or as a fraction of the in-place oil.
Refined Petroleum Products	End products in the refining process.
Refinery Light Ends	Light oil products produced at a refinery; includes gasoline and aviation fuel.
Remaining Established Reserves	Initial established reserves less cumulative production.
Reprocessing Facilities	Gas processing plants used to extract ethane and natural gas liquids from marketable natural gas. Such facilities, also referred to as straddle plants, are located on major natural gas transmission lines.
Reservoir	A porous and permeable underground formation containing an individual and separate natural accumulation of producible hydrocarbons (oil and/or gas) that is confined by impermeable rock or water barriers and is characterized by a single natural pressure system.
Rich Gas	Natural gas that contains a relatively high concentration of natural gas liquids.
Sales Gas	A volume of gas transacted in a time period. This gas may be augmented with gas from storage.
Saturation (Gas)	The fraction of pore space in the reservoir rock occupied by gas upon discovery.
Saturation (Water)	The fraction of pore space in the reservoir rock occupied by water upon discovery.
Shale Gas	The naturally occurring dry, predominantly methane gas produced from organic-rich, fine- grained rocks.
Shrinkage Factor (Initial)	The volume occupied by 1 cubic metre of oil from a pool measured at standard conditions after flash gas liberation consistent with the surface separation process and divided by the volume occupied by the same oil and gas at the pressure and temperature of a pool upon discovery.
Solvent	A suitable mixture of hydrocarbons ranging from methane to pentanes plus but consisting largely of methane, ethane, propane, and butanes for use in enhanced-recovery operations.
Specification Product	A crude oil or refined petroleum product with defined properties.
Sterilization	The rendering of otherwise definable economic ore as unrecoverable.
Straddle Plants	These are reprocessing plants on major natural gas transmission lines that process marketable gas by extracting natural gas liquids. This results in gas for export having a lower heat content than the marketable gas flowing within the province.
Strike Area	See Field or Strike Area.
Strip Ratio	The amount of overburden that must be removed to gain access to a unit amount of coal. A stripping ratio may be expressed as (1) thickness of overburden to thickness of coal, (2) volume of overburden to volume coal, (3) weight of overburden to weight of coal, or (4) cubic yards of overburden to tons of coal. A stripping ratio commonly is used to express the maximum thickness, volume, or weight of overburden that can be profitably removed to obtain a unit amount of coal.
Successful Wells Drilled	Wells drilled for gas or oil that are cased and not abandoned at the time of drilling.

Surface Loss	A summation of the fractions of recoverable gas that is removed as acid gas and liquid hydrocarbons and gas that is used as lease or plant fuel or is flared.	
Upgraded Bitumen	A mixture of hydrocarbons, similar to crude oil, derived by upgrading bitumen from oil sands.	
Temperature	The initial reservoir temperature upon discovery at the reference elevation of a pool.	
Ultimate Potential	An estimate of the initial established reserves that will have been developed in an area by the time all exploratory and development activity has ceased, having regard for the geological prospects of that area and anticipated technology and economic conditions. Ultimate potential includes cumulative production, remaining established reserves, and future additions through extensions and revisions to existing pools and the discovery of new pools. Ultimate potential can be expressed by the following simple equation: Ultimate potential = initial established reserves + additions to existing pools + future discoveries.	
Upgrading	The process that converts bitumen and heavy crude oil into a product with a density and viscosity similar to light crude oil.	
Well Connections	Refers to the geological (producing) occurrences within a well; there may be more than one per wellbore.	
Western Canadian Select (WCS)	Western Canadian Select is a grade of heavy crude oil derived from of a mix of heavy crude oil and crude bitumen blended with diluents. The price of WCS is often used as a representative price for Canadian heavy crude oils.	
West Texas Intermediate (WTI)	West Texas Intermediate is a light sweet crude oil that is typically referenced for pricing purposes at Cushing, Oklahoma.	
Zone	Any stratum or sequence of strata that is designated by the ERCB as a zone (<i>Oil and Gas Conservation Act</i> , Section $1(1)(z)$).	

A.2 PSAC Areas

The Petroleum Services Association of Canada (PSAC) has sectioned Canada into a number of geographic regions based on the predominate type of geological interest to the oil and gas industry. **Figure AA.1** shows the PSAC areas in Alberta. In discussing historical, current, and future oil and gas activity in Alberta, the ERCB often references such activity by PSAC area.

A.3 Symbols

°C	degree Celsius	М	mega
d	day	m	metre
EJ	exajoule	MJ	megajoule
ha	hectare	mol	mole
J	joule	Т	tera
kg	kilogram	t	tonne
kPa	kilopascal	TJ	terajoule
Imperial			
bbl	barrel	°F	degree Fahrenheit
Btu	British thermal unit	psia	pounds per square inch absolute
cf	cubic foot	psig	pounds per square inch gauge
d	day	М	thousand
MM	million	В	billion
Т	trillion		

A.4 Conversion Factors

Metric and Imperial Equivalent Units^a

Metric	Imperial
1 m³ of gas⁵ (101.325 kPa and 15°C)	= 35.49373 cubic feet of gas
1 m ³ of ethane (equilibrium pressure and 15°C)	= 6.3301 Canadian barrels of ethane (equilibrium pressure and 60°F)
1 m³ of propane (equilibrium pressure and 15°C)	= 6.3000 Canadian barrels of propane (equilibrium pressure and 60°F)
1 m ³ of butanes (equilibrium pressure and 15°C)	= 6.2968 Canadian barrels of butanes (equilibrium pressure and 60°F)
1 m ³ of oil or pentanes plus (equilibrium pressure and 15°C)	= 6.2929 Canadian barrels of oil or pentanes plus (equilibrium pressure and 60°F)
1 m³ of water (equilibrium pressure and 15°C)	= 6.2901 Canadian barrels of water (equilibrium pressure and 60°F)
1 tonne	= 0.9842064 (U.K.) long tons (2240 pounds)
1 tonne	= 1.102311 short tons (2000 pounds)
1 kilojoule	= 0.9482133 British thermal units (Btu) as defined in the federal <i>Gas Inspection Act</i> (60-61°F)

^a Reserves data in this report are presented in the International System of Units (SI). The provincial totals and a few other major totals are shown in both SI units and the imperial equivalents in the various tables.

^b Volumes of gas are given as at a standard pressure and temperature of 101.325 kPa and 15°C respectively.

Value and Scientific Notation

Term	Value (short scale)	Scientific notation
kilo	thousand	10 ³
mega	million	10 ⁶
giga	billion	10 ⁹
tera	thousand billion (trillion)	10 ¹²
peta	million billion	10 ¹⁵
exa	billion billion	10 ¹⁸

Energy Content Factors

Energy resource	Gigajoules
Natural gas (per thousand cubic metres)	37.4*
Ethane (per cubic metre)	18.5
Propane (per cubic metre)	25.4
Butanes (per cubic metre)	28.2
Oil (per cubic metre)	
Light and medium crude oil	38.5
Heavy crude oil	41.4
Bitumen	42.8
Upgraded bitumen (synthetic crude oil)	39.4
Pentanes plus	33.1
Refined petroleum products (per cubic metre)	
Motor gasoline	34.7
Diesel	38.7
Aviation turbo fuel	35.9
Aviation gasoline	33.5
Kerosene	37.7
Light fuel oil	38.7
Heavy fuel oil	41.7
Naphthas	35.2
Lubricating oils and greases	39.2
Petrochemical feedstock	35.2
Asphalt	44.5
Coke	28.8
Other products (from refinery)	39.8
Coal (per tonne)	
Subbituminous	18.5
Bituminous	25.0
Electricity (per megawatt-hour of output)	3.6

* Based on the heating value at 1000 Btu/cf.

Appendix B Summary of Crude Bitumen, Conventional Crude Oil, Natural Gas Reserves, and Natural Gas Liquids

Oil Sands Area Oil sands deposit	Depth/region/zone (m)	Resource determination method	Initial volume in place (10º m³)
Athabasca			
Upper Grand Rapids	150–450+	Isopach	5 817
Middle Grand Rapids	150–450+	Isopach	2 171
Lower Grand Rapids	150–450+	Isopach	1 286
Wabiskaw-McMurray	0–750+	Isopach	152 432
Nisku	200–800+	lsopach	16 232
Grosmont	All zones	Isopach	64 537
Subtotal			242 475
Cold Lake			
Upper Grand Rapids	All zones	Isopach	5 377
Lower Grand Rapids	All zones	Isopach	10 004
Clearwater	350–625	Isopach	9 422
Wabiskaw-McMurray	Northern	Isopach	2 161
Wabiskaw-McMurray	Central-southern	Building block	1 439
Wabiskaw-McMurray	Cummings & McMurray	Isopach	687
Subtotal			29 090
Peace River			
Bluesky-Gething	300-800+	Isopach	10 968
Belloy	675–700	Building block	282
Upper Debolt	500-800	Building block	1 830
Lower Debolt	500–800	Building block	5 970
Shunda	500-800	Building block	2 510
Subtotal			21 560
Total			293 125

Table B.1 Initial in-place resources of crude bitumen by deposit

Table B.2 Basic data of crude bitumen deposits

					Bitumen s	aturation	ration		
Oil Sands Area Oil sands deposit Depth/region/zone Sector-pool	Resource determination method	Initial volume in place (10 ⁶ m ³)	Area (10³ ha)	Average pay thickness (m)	(mass fraction)	(pore volume fraction)	Porosity (fraction)	Water saturation (fraction)	
Athabasca									
Upper Grand Rapids									
150–450+	Isopach	5 817.00	359.00	8.5	0.092	0.58	0.33	0.42	
Middle Grand Rapids									
150–450+	Isopach	2 171.00	183.00	6.8	0.084	0.55	0.32	0.45	
Lower Grand Rapids									
150–450+	Isopach	1 286.00	134.00	5.6	0.083	0.52	0.33	0.48	
Wabiskaw-McMurray									
0–65 (mineable)	Isopach	20 823.00	375.00	25.9	0.101	0.76	0.28	0.24	
65–750+ (in situ)	lsopach	131 609.00	4 694.00	13.1	0.102	0.73	0.29	0.27	
Nisku						-			
200-800+	Isopach	16 232.00	819.00	14.4	0.057	0.68	0.20	0.32	
Grosmont									
D	lsopach	32 860.00	850.00	21.0	0.081	0.81	0.23	0.19	
С	Isopach	18 755.00	1 069.00	13.6	0.054	0.78	0.17	0.22	
В	Isopach	4 450.00	787.00	4.9	0.048	0.76	0.15	0.24	
А	Isopach	8 472.00	1 274.00	6.5	0.041	0.72	0.14	0.28	
Cold Lake									
Upper Grand Rapids									
All Zones	Total Isopach	5 377.00	612.00	4.8	0.090	0.65	0.28	0.35	
Colony 1									
Lindbergh C	Isopach	0.18	0.05	1.5	0.115	0.79	0.31	0.21	
Beaverdam A	Isopach	7.33	1.05	2.9	0.115	0.79	0.31	0.21	
Beaverdam B	Isopach	4.75	0.52	3.5	0.122	0.84	0.31	0.16	
Beaverdam C	Isopach	2.03	0.26	3.1	0.119	0.76	0.33	0.24	
Beaverdam/ Bonnyville A	Isopach	12.11	1.90	2.6	0.116	0.80	0.31	0.20	
Colony 2									
Frog Lake A	Isopach	2.01	0.47	1.8	0.109	0.75	0.31	0.25	
Frog Lake B	Isopach	0.11	0.04	1.3	0.093	0.67	0.30	0.33	
Frog Lake C	Isopach	0.35	0.12	1.3	0.103	0.74	0.30	0.26	
Frog Lake D	Isopach	0.29	0.10	1.3	0.099	0.71	0.30	0.29	
Frog Lake E	Isopach	0.43	0.13	1.4	0.106	0.79	0.29	0.21	
Frog Lake F	Isopach	0.33	0.10	1.7	0.092	0.69	0.29	0.31	

					Bitumen s	aturation		
Oil Sands Area Oil sands deposit Depth/region/zone Sector-pool	Resource determination method	Initial volume in place (10 ⁶ m³)	Area (10³ ha)	Average pay thickness (m)	(mass fraction)	(pore volume fraction)	Porosity (fraction)	Water saturation (fraction)
Frog Lake M	Isopach	0.55	0.14	1.8	0.100	0.72	0.30	0.28
Frog Lake N	Isopach	0.80	0.25	1.5	0.099	0.71	0.30	0.29
Frog Lake O	Isopach	0.15	0.03	2.5	0.096	0.66	0.31	0.34
Lindbergh A	Isopach	0.83	0.26	1.6	0.091	0.68	0.29	0.32
Lindbergh D	Isopach	1.20	0.13	3.4	0.130	0.86	0.32	0.14
Lindbergh E	Isopach	6.11	0.39	5.3	0.139	0.92	0.32	0.08
Lindbergh F	Isopach	0.85	0.09	3.3	0.136	0.90	0.32	0.10
Lindbergh G	Isopach	2.35	0.33	2.7	0.124	0.82	0.32	0.18
Lindbergh J	Isopach	3.56	0.60	2.6	0.106	0.76	0.30	0.24
Lindbergh K	Isopach	6.23	0.92	3.0	0.107	0.74	0.31	0.26
Lindbergh L	Isopach	1.99	0.31	2.4	0.125	0.83	0.32	0.17
Colony 3								
Frog Lake G	Isopach	0.48	0.09	2.1	0.116	0.83	0.30	0.17
Frog Lake H	Isopach	0.15	0.06	1.2	0.096	0.69	0.30	0.31
Frog Lake I	Isopach	1.61	0.23	2.9	0.111	0.80	0.30	0.20
Frog Lake J	Isopach	1.03	0.20	2.2	0.112	0.74	0.32	0.26
Frog Lake L	Isopach	130.95	6.43	7.4	0.130	0.86	0.32	0.14
Frog Lake P	Isopach	0.70	0.15	2.3	0.092	0.69	0.29	0.31
Lindbergh H	Isopach	2.04	0.24	3.2	0.124	0.82	0.32	0.18
Lindbergh I	Isopach	0.15	0.02	2.9	0.121	0.80	0.32	0.20
Colony Channel								
St. Paul A	Isopach	6.41	0.68	3.2	0.140	0.89	0.33	0.11
Grand Rapids 2								
Beaverdam A	Isopach	3.86	0.70	2.3	0.112	0.74	0.32	0.26
Beaverdam B	Isopach	1.96	0.39	2.5	0.094	0.70	0.29	0.30
Beaverdam D	Isopach	1.12	0.25	2.0	0.103	0.71	0.31	0.29
Beaverdam E	Isopach	0.23	0.11	0.9	0.111	0.71	0.33	0.29
Beaverdam G	Isopach	1.41	0.30	1.9	0.115	0.76	0.32	0.24
Beaverdam H	Isopach	9.97	1.34	3.0	0.118	0.78	0.32	0.22
Beaverdam I	Isopach	0.40	0.11	1.4	0.130	0.77	0.35	0.23
Frog Lake/ Beaverdam A	Isopach	64.45	6.69	3.7	0.125	0.77	0.34	0.23
Beaverdam/ Bonnyville A	Isopach	2.59	0.53	2.1	0.112	0.74	0.32	0.26

Table B.2 (continued)

					Bitumen s	aturation		
Oil Sands Area Oil sands deposit Depth/region/zone Sector-pool	Resource determination method	Initial volume in place (10 ⁶ m³)	Area (10³ ha)	Average pay thickness (m)	(mass fraction)	(pore volume fraction)	Porosity (fraction)	Water saturation (fraction)
Grand Rapids Channel								
Wolf Lake A	Isopach	14.90	0.35	14.8	0.140	0.80	0.36	0.20
Waseca								
Frog Lake A	Isopach	1.09	0.38	1.7	0.076	0.57	0.29	0.43
Frog Lake B	Isopach	77.34	4.65	6.8	0.116	0.77	0.32	0.23
Beaverdam A	Isopach	4.59	0.21	8.6	0.121	0.77	0.33	0.23
Beaverdam B	Isopach	9.72	0.30	10.7	0.145	0.89	0.34	0.1
Beaverdam C	Isopach	6.57	0.15	15.0	0.140	0.86	0.34	0.14
Frog Lake/ Lindbergh A	Isopach	135.86	15.56	4.3	0.095	0.68	0.30	0.32
Lower Grand Rapids								
All Zones	Total Isopach	1 004.00	658.00	7.8	0.092	0.65	0.30	0.3
Sparky								
Frog Lake A	Isopach	4.60	0.75	2.9	0.100	0.69	0.31	0.3
Frog Lake B	Isopach	0.30	0.06	2.2	0.109	0.72	0.32	0.2
Frog Lake C	Isopach	0.79	0.16	2.2	0.107	0.74	0.31	0.2
Frog Lake D	Isopach	0.21	0.07	1.7	0.083	0.62	0.29	0.3
Frog Lake E	Isopach	1.54	0.31	2.6	0.087	0.65	0.29	0.3
Frog Lake F	Isopach	12.36	1.47	3.1	0.130	0.83	0.33	0.1
Frog Lake G	Isopach	0.51	0.06	3.2	0.123	0.85	0.31	0.1
Frog Lake H	Isopach	0.09	0.02	1.7	0.127	0.81	0.33	0.1
Frog Lake I	Isopach	5.72	0.74	2.6	0.144	0.85	0.35	0.1
Lindbergh A	Isopach	54.96	8.17	3.1	0.102	0.70	0.31	0.3
Lindbergh C	Isopach	0.91	0.37	1.4	0.084	0.60	0.30	0.4
Lindbergh D	Isopach	26.51	4.05	2.7	0.116	0.74	0.33	0.2
Lindbergh E	Isopach	0.12	0.09	0.8	0.078	0.67	0.26	0.3
Lindbergh F	Isopach	0.31	0.14	1.3	0.081	0.58	0.30	0.4
Lindbergh I	Isopach	0.13	0.07	0.9	0.100	0.64	0.33	0.3
Lindbergh K	Isopach	0.84	0.24	1.7	0.093	0.67	0.30	0.3
Lindbergh L	Isopach	3.45	0.58	2.1	0.140	0.83	0.34	0.1
Lindbergh M	Isopach	7.10	0.85	3.1	0.130	0.83	0.33	0.1
Beaverdam A	Isopach	3.90	0.30	5.2	0.119	0.73	0.34	0.2
Beaverdam B	Isopach	3.40	0.33	4.8	0.103	0.63	0.34	0.3

Table B.2 (continued)
-------------	------------

					Bitumen s	aturation		
Dil Sands Area Oil sands deposit Depth/region/zone Sector-pool	Resource determination method	Initial volume in place (10 ⁶ m³)	Area (10³ ha)	Average pay thickness (m)	(mass fraction)	(pore volume fraction)	Porosity (fraction)	Water saturation (fraction)
Beaverdam C	Isopach	6.53	0.79	3.0	0.130	0.80	0.34	0.20
Beaverdam D	Isopach	30.23	3.48	3.3	0.124	0.82	0.32	0.18
Beaverdam E	Isopach	27.25	3.41	3.0	0.127	0.81	0.33	0.19
Beaverdam F	Isopach	8.07	1.17	2.6	0.129	0.82	0.33	0.18
Beaverdam H	Isopach	1.68	0.21	2.9	0.133	0.79	0.35	0.21
Cold Lake A	Isopach	9.74	1.00	3.7	0.128	0.76	0.35	0.24
Cold Lake B	Isopach	1.77	0.27	2.4	0.135	0.77	0.36	0.23
Mann Lake/ Seibert Lk A	Isopach	6.61	0.55	4.4	0.129	0.82	0.33	0.18
Lower Grand Rapids	2							
Frog Lake OO	Isopach	1.71	0.27	2.9	0.103	0.74	0.30	0.26
Frog Lake QQ	Isopach	0.55	0.10	2.2	0.119	0.82	0.31	0.18
Lindbergh G	Isopach	35.32	5.94	2.8	0.100	0.69	0.31	0.3
Lindbergh K	Isopach	0.76	0.21	2.0	0.084	0.63	0.29	0.3
Lindbergh VV	Isopach	0.36	0.12	1.5	0.095	0.68	0.30	0.32
Lindbergh WW	Isopach	2.60	0.51	2.0	0.122	0.78	0.33	0.22
Beaverdam A	Isopach	4.66	1.67	1.8	0.069	0.62	0.25	0.38
Cold Lake A	Isopach	3.09	0.89	1.5	0.111	0.71	0.33	0.29
Cold Lake D	Isopach	0.58	0.19	1.2	0.122	0.75	0.34	0.2
Lower Grand Rapids	3							
Frog Lake C	Isopach	4.80	0.46	4.4	0.112	0.77	0.31	0.23
Frog Lake D	Isopach	10.38	1.09	3.7	0.121	0.80	0.32	0.20
Frog Lake E	Isopach	4.50	0.88	2.3	0.106	0.73	0.31	0.2
Frog Lake F	Isopach	0.41	0.10	1.9	0.098	0.73	0.29	0.2
Lindbergh F	Isopach	31.58	3.02	4.2	0.118	0.78	0.32	0.22
Lindbergh L	Isopach	1.58	0.24	2.9	0.108	0.69	0.33	0.3
Lindbergh M	Isopach	8.40	1.46	2.7	0.100	0.69	0.31	0.31
Lindbergh O	Isopach	11.50	1.54	3.7	0.095	0.68	0.30	0.32
Lindbergh P	Isopach	2.04	0.25	3.5	0.110	0.76	0.31	0.24
Lindbergh Q	lsopach	27.61	2.92	3.7	0.119	0.79	0.32	0.2
Lindbergh S	Isopach	2.46	0.37	2.8	0.113	0.72	0.33	0.28
Lindbergh T	Isopach	2.97	0.47	2.6	0.115	0.76	0.32	0.24
Lindbergh U	Isopach	0.18	0.06	1.4	0.094	0.70	0.29	0.30
Lindbergh V	Isopach	0.13	0.06	1.3	0.081	0.56	0.31	0.44

Table B.2 (continued)

					Bitumen s	aturation		Water saturation (fraction)
Dil Sands Area Oil sands deposit Depth/region/zone Sector-pool	Resource determination method	Initial volume in place (10 ⁶ m³)	Area (10³ ha)	Average pay thickness (m)	(mass fraction)	(pore volume fraction)	Porosity (fraction)	
Lindbergh X	Isopach	0.75	0.20	2.4	0.073	0.57	0.28	0.43
Lindbergh Y	Isopach	1.61	0.35	2.5	0.086	0.59	0.31	0.41
Lindbergh Z	Isopach	0.12	0.07	0.8	0.094	0.65	0.31	0.35
Lindbergh AA	Isopach	3.26	0.50	3.1	0.099	0.71	0.30	0.29
Lindbergh BB	Isopach	0.08	0.03	1.4	0.093	0.59	0.33	0.41
Lindbergh CC	Isopach	2.18	0.31	3.0	0.110	0.76	0.31	0.24
Lindbergh OO	Isopach	0.24	0.09	1.6	0.075	0.54	0.30	0.46
Lindbergh XX	Isopach	0.32	0.09	1.9	0.086	0.62	0.30	0.38
Lindbergh YY	Isopach	3.94	0.39	4.0	0.117	0.81	0.31	0.19
Frog Lake/ Lindbergh C	Isopach	9.95	1.07	3.7	0.119	0.79	0.32	0.21
Frog Lake/ Beaverdam A	Isopach	3.85	0.55	2.8	0.119	0.73	0.34	0.27
Lindbergh/ St. Paul A	Isopach	9.58	0.81	4.6	0.121	0.80	0.32	0.20
Beaverdam B	Isopach	84.40	9.49	3.5	0.121	0.77	0.33	0.23
Beaverdam G	Isopach	1.46	0.25	2.4	0.115	0.76	0.32	0.24
Beaverdam H	Isopach	1.65	0.31	2.1	0.120	0.74	0.34	0.26
Cold Lake B	Isopach	2.73	0.56	2.0	0.116	0.71	0.34	0.29
Wolf Lake D	Isopach	23.34	2.64	3.1	0.139	0.82	0.35	0.18
Lower Grd Rap Char	nnel Sd							
Beaverdam F	Isopach	26.72	0.86	10.4	0.145	0.83	0.36	0.1
Wolf Lake F	Isopach	101.14	3.39	10.3	0.140	0.83	0.35	0.17
Lower Grand Rapids	4							
Frog Lake G	Isopach	9.15	0.97	3.6	0.124	0.79	0.33	0.2
Frog Lake I	Isopach	15.37	1.52	4.0	0.121	0.80	0.32	0.20
Frog Lake J	Isopach	1.49	0.21	2.8	0.118	0.78	0.32	0.22
Frog Lake K	Isopach	0.80	0.06	4.3	0.146	0.93	0.33	0.07
Frog Lake L	lsopach	0.60	0.11	2.1	0.121	0.80	0.32	0.20
Frog Lake M	Isopach	1.04	0.21	2.2	0.107	0.71	0.32	0.29
Frog Lake N	Isopach	2.88	0.34	3.1	0.129	0.82	0.33	0.18
Frog Lake P	Isopach	1.97	0.22	3.2	0.135	0.86	0.33	0.14
Frog Lake Q	Isopach	1.43	0.25	2.6	0.102	0.73	0.30	0.2
Frog Lake T	lsopach	0.25	0.06	1.7	0.122	0.78	0.33	0.22
Frog Lake NN	Isopach	5.41	0.42	5.8	0.104	0.72	0.31	0.28

Table B.2	(continued)
-----------	-------------

					Bitumen s	aturation		
il Sands Area Oil sands deposit Depth/region/zone Sector-pool	Resource determination method	Initial volume in place (10 ⁶ m³)	Area (10³ ha)	Average pay thickness (m)	(mass fraction)	(pore volume fraction)	Porosity (fraction)	Water saturation (fraction)
Frog Lake PP	Isopach	0.13	0.03	2.4	0.086	0.57	0.32	0.43
Lindbergh B	Isopach	17.65	1.97	3.5	0.121	0.80	0.32	0.20
Lindbergh C	Isopach	6.85	0.93	3.1	0.113	0.75	0.32	0.25
Lindbergh D	Isopach	3.29	0.45	3.1	0.102	0.76	0.31	0.24
Lindbergh E	Isopach	3.24	0.50	2.7	0.115	0.79	0.31	0.21
Lindbergh H	Isopach	1.95	0.33	2.5	0.109	0.75	0.31	0.25
Lindbergh I	Isopach	1.44	0.25	2.5	0.109	0.75	0.31	0.25
Lindbergh J	Isopach	3.54	0.56	2.7	0.110	0.76	0.31	0.24
Lindbergh DD	Isopach	0.31	0.08	2.0	0.092	0.61	0.32	0.39
Lindbergh EE	Isopach	0.05	0.10	2.2	0.009	0.73	0.03	0.27
Lindbergh FF	Isopach	1.50	0.26	2.4	0.115	0.76	0.32	0.24
Lindbergh GG	Isopach	0.19	0.04	2.3	0.098	0.60	0.34	0.40
Lindbergh HH	Isopach	0.80	0.17	2.4	0.090	0.62	0.31	0.38
Lindbergh II	lsopach	0.20	0.04	2.6	0.089	0.59	0.32	0.41
Lindbergh JJ	Isopach	6.99	0.83	3.3	0.119	0.79	0.32	0.21
Lindbergh KK	Isopach	0.63	0.13	2.2	0.105	0.67	0.33	0.33
Lindbergh MM	Isopach	10.79	1.30	3.4	0.116	0.77	0.32	0.23
Lindbergh NN	Isopach	2.73	0.38	2.9	0.119	0.76	0.33	0.24
Lindbergh PP	Isopach	2.67	0.34	3.7	0.099	0.71	0.30	0.29
Lindbergh QQ	Isopach	0.79	0.14	2.4	0.107	0.80	0.29	0.20
Lindbergh RR	Isopach	0.05	0.02	1.4	0.089	0.64	0.30	0.36
Lindbergh SS	Isopach	3.12	0.29	4.7	0.110	0.70	0.33	0.30
Lindbergh UU	Isopach	0.57	0.10	2.4	0.113	0.75	0.32	0.25
Lindbergh ZZ	Isopach	10.13	1.10	3.8	0.113	0.78	0.31	0.22
Lindbergh EEE	lsopach	0.56	0.05	4.2	0.129	0.82	0.33	0.18
Lindbergh FFF	Isopach	3.81	0.54	2.7	0.127	0.80	0.33	0.20
Lindbergh GGG	Isopach	1.42	0.22	2.4	0.129	0.81	0.33	0.19
Lindbergh HHH	Isopach	2.21	0.27	3.0	0.129	0.82	0.33	0.18
Lindbergh JJJ	Isopach	2.20	0.27	3.0	0.127	0.84	0.32	0.16
Beaverdam C	Isopach	24.01	2.69	3.5	0.119	0.79	0.32	0.21
Cold Lake C	Isopach	4.22	0.77	2.2	0.117	0.72	0.34	0.28
Lindbergh/ St. Paul B	Isopach	9.63	1.22	3.4	0.110	0.73	0.32	0.27

Table B.2 (continued)

il Osuda Au					Bitumen saturation			
il Sands Area Oil sands deposit Depth/region/zone Sector-pool	Resource determination method	Initial volume in place (10 ⁶ m³)	Area (10³ ha)	Average pay thickness (m)	(mass fraction)	(pore volume fraction)	Porosity (fraction)	Wate saturation (fraction
Lower Grand Rapids	s 5							
Lindbergh AAA	Isopach	2.51	0.40	3.1	0.093	0.70	0.29	0.3
Lindbergh BBB	Isopach	0.29	0.10	1.6	0.083	0.62	0.29	0.3
Lindbergh CCC	Isopach	0.11	0.04	1.6	0.080	0.60	0.29	0.40
St. Paul A	Isopach	1.93	0.32	3.1	0.089	0.64	0.30	0.3
St. Paul B	Isopach	0.24	0.06	2.2	0.084	0.63	0.29	0.3
Lloydminster								
Frog Lake A	Isopach	1.34	0.17	3.9	0.097	0.62	0.33	0.38
Frog Lake B	Isopach	4.63	0.54	4.4	0.091	0.63	0.31	0.3
Frog Lake C	Isopach	2.85	0.38	3.6	0.100	0.64	0.33	0.3
Lindbergh D	Isopach	3.65	0.54	2.8	0.116	0.74	0.33	0.20
Lindbergh F	Isopach	2.91	0.48	3.6	0.078	0.56	0.30	0.44
Lindbergh G	Isopach	1.01	0.14	4.0	0.085	0.61	0.30	0.3
Lindbergh H	Isopach	28.27	2.31	5.1	0.113	0.75	0.32	0.2
Lindbergh I	Isopach	7.66	0.52	5.6	0.123	0.85	0.31	0.1
Lindbergh J	Isopach	0.68	0.21	1.4	0.109	0.72	0.32	0.28
Beaverdam A	Isopach	128.78	6.39	8.9	0.107	0.71	0.32	0.29
Frog Lake/ Lindbergh A	lsopach	5.31	0.59	4.6	0.091	0.63	0.31	0.3
Lindbergh/ St. Paul B	lsopach	60.39	2.43	8.9	0.133	0.85	0.33	0.1
Lindbergh/ St. Paul C	lsopach	3.81	0.34	4.7	0.113	0.75	0.32	0.2
Lindbergh/ Beaverdam A	lsopach	44.56	3.16	5.5	0.120	0.83	0.31	0.1
Lind./Beaver./ Bonny. A	lsopach	511.25	19.81	8.9	0.138	0.85	0.34	0.1
Cold Lake A	Isopach	15.74	1.29	4.7	0.125	0.74	0.35	0.2
Clearwater								
350–625	Isopach	9 422.00	433.00	11.8	0.089	0.59	0.31	0.4
Wabiskaw-McMurray								
Northern	Isopach	2 161.00	132.00	8.9	0.087	0.64	0.29	0.3
Central-Southern	Building Block	1 439.00	285.00	4.1	0.057	0.51	0.25	0.4
Cummings 1								
Frog Lake A	Isopach	4.07	0.69	2.4	0.116	0.83	0.30	0.1
Frog Lake B	Isopach	1.52	0.17	3.4	0.124	0.82	0.32	0.1

					Bitumen saturation			
Oil Sands Area Oil sands deposit Depth/region/zone Sector-pool	Resource determination method	Initial volume in place (10 ⁶ m ³)	Area (10³ ha)	Average pay thickness (m)	(mass fraction)	(pore volume fraction)	Porosity (fraction)	Water saturation (fraction)
Frog Lake C	Isopach	5.20	0.66	3.0	0.122	0.81	0.32	0.19
Frog Lake/ Lindbergh A	lsopach	38.28	3.76	3.9	0.122	0.84	0.31	0.16
Lindbergh/ St. Paul A	Isopach	273.08	29.62	3.9	0.109	0.78	0.30	0.22
Cummings 2								
St. Paul B	Isopach	1.32	0.18	3.2	0.106	0.76	0.30	0.24
Lindbergh/ St. Paul B	Isopach	221.36	20.89	4.2	0.117	0.81	0.31	0.19
McMurray								
Lindbergh A	Isopach	89.87	5.49	6.1	0.127	0.84	0.32	0.16
Lindbergh B	Isopach	0.09	0.02	2.4	0.083	0.68	0.27	0.32
Lindbergh C	Isopach	42.72	5.83	3.1	0.112	0.77	0.31	0.23
Lindbergh D	Isopach	0.94	0.11	3.2	0.125	0.86	0.31	0.14
Lindbergh E	Isopach	0.07	0.05	0.7	0.088	0.69	0.28	0.31
Lindbergh F	Isopach	8.11	0.55	6.7	0.103	0.71	0.31	0.29
St. Paul A	Isopach	0.04	0.02	1.2	0.090	0.62	0.31	0.38
Peace River								
Bluesky-Gething								
300-800+	Isopach	10 968.00	1 016.00	6.1	0.081	0.68	0.26	0.32
Belloy								
675–700	Building Block	282.00	26.00	8.0	0.078	0.64	0.27	0.36
Upper Debolt								
500–800	Building Block	1 830.00	100.00	13.0	0.050	0.61	0.19	0.39
Lower Debolt								
500-800	Building Block	5 970.00	202.00	29.0	0.051	0.67	0.18	0.33
Shunda								
500-800	Building Block	2 510.00	143.00	14.0	0.053	0.52	0.23	0.48
Total		293 124.67						

Table B.2 (continued)

		Changes to i	nitial establishe	d reserves	Initial		Remaining	
Year	New discoveries	EOR additions	Development	Revisions	Net changes	established reserves	Cumulative production	established reserves
1968	62.0				119.8	1 643.1	430.3	1 212.8
1969	40.5				54.5	1 697.5	474.7	1 222.8
1970	8.4				36.7	1 734.4	526.5	1 207.9
1971	14.0				22.1	1 756.5	582.9	1 173.6
1972	10.8				20.0	1 776.0	650.0	1 126.0
1973	5.1				9.2	1 785.7	733.7	1 052.0
1974	4.3				38.5	1 824.2	812.7	1 011.5
1975	1.6				7.0	1 831.1	880.2	950.9
1976	2.5				-18.6	1 812.5	941.2	871.3
1977	4.8				19.1	1 831.6	1 001.6	830.0
1978	24.9				24.4	1 856.1	1 061.6	794.5
1979	19.2				34.3	1 890.3	1 130.1	760.2
1980	9.0				22.8	1 913.2	1 193.3	719.9
1981	15.0	7.2			32.6	1 945.8	1 249.8	696.0
1982	16.8	6.6			6.9	1 952.8	1 303.4	649.4
1983	21.4	17.9			64.1	2 016.8	1 359.0	657.8
1984	29.1	24.1			42.0	2 058.9	1 418.2	640.7
1985	32.7	21.6			64.0	2 123.0	1 474.5	648.5
1986	28.6	24.6	16.6	-30.7	39.1	2 162.4	1 527.7	634.7
1987	20.9	10.5	12.8	-11.2	33.0	2 195.4	1 581.6	613.8
1988	18.0	16.5	18.0	-15.8	36.7	2 231.7	1 638.8	592.9
1989	17.0	7.8	12.9	-16.3	21.4	2 253.1	1 692.6	560.5
1990	13.0	8.4	7.2	-25.6	3.0	2 256.1	1 745.7	510.4
1991	10.2	9.1	10.6	-20.5	9.4	2 265.6	1 797.1	468.5
1992	9.0	2.8	12.3	3.0	27.1	2 292.7	1 850.7	442.0
1993	7.3	7.9	14.2	9.8	39.2	2 331.9	1 905.1	426.8
1994	10.5	5.7	11.1	-22.6	4.7	2 336.5	1 961.7	374.8
1995	10.2	9.2	20.8	14.8	55.0	2 391.6	2 017.5	374.1
1996	9.7	6.1	16.3	-9.5	22.6	2 414.1	2 072.3	341.8
1997	8.5	4.2	16.1	8.7	37.5	2 451.6	2 124.8	326.8
1998	8.9	2.9	17.5	9.2	38.5	2 490.1	2 174.9	315.2
1999	5.6	2.1	7.2	16.6	31.5	2 521.5	2 219.9	301.6
2000	7.8	1.5	13.4	10.0	32.8	2 554.3	2 262.9	291.4
2001	9.1	0.8	13.6	5.2	28.6	2 583.0	2 304.7	278.3
2002	7.0	0.6	8.1	4.6	20.2	2 603.3	2 343.0	260.3

Table B.3 Conventional crude oil reserves as of each year-end (10⁶ m³)

	C	Changes to i	nitial establishe	d reserves		Initial	Remaining	
Year	New discoveries	EOR additions	Development	Revisions	Net changes	established reserves	Cumulative production	established reserves
2003	6.9	1.0	5.9	17.1	30.8	2 634.0	2 380.1	253.9
2004	6.1	3.2	8.0	13.6	30.9	2 664.9	2 415.7	249.2
2005	5.5	1.2	13.2	18.9	38.8	2 703.7	2 448.9	254.8
2006	8.2	1.9	14.8	2.2	27.1	2 730.8	2 480.7	250.1
2007	6.8	2.2	11.8	-0.2	20.6	2 751.6	2 510.9	240.7
2008	6.9	6.2	9.3	-0.7	21.7	2 773.1	2 540.1	233.0
2009	4.0	4.8	7.4	+5.8	21.8	2 794.9	2 566.5	228.4
2010	3.8	5.8	23.5	+1.7	34.8	2 829.7	2 592.8	236.9
2011	4.0	6.4	14.0	+9.0	33.5	2 863.2	2 617.3	245.9
2012	5.8	2.2	52.9	-2.4	58.5	2 921.7	2 652.5	269.2

Table B.3 (continued)

	Changes	to initial establis	hed reserve	s	Remain				
Year	New discoveries	Development	Revisions	Net changes	Initial established reserves	Cumulative production	Remaining established reservesª	reserves at 37.4 MJ/m ³	
1966				40.7	1 251.0	178.3	1 072.6	1 142.5	
1967				73.9	1 324.9	205.8	1 119.1	1 189.6	
1968				134.6	1 459.5	235.8	1 223.6	1 289.0	
1969				87.5	1 547.0	273.6	1 273.4	1 342.6	
1970				46.2	1 593.2	313.8	1 279.4	1 352.0	
1971				45.4	1 638.6	362.3	1 276.3	1 346.9	
1972				45.2	1 683.9	414.7	1 269.1	1 337.6	
1973				183.4	1 867.2	470.7	1 396.6	1 464.5	
1974				147.0	2 014.3	527.8	1 486.5	1 550.2	
1975				20.8	2 035.1	584.3	1 450.8	1 512.8	
1976				105.6	2 140.7	639.0	1 501.7	1 563.9	
1977				127.6	2 268.2	700.0	1 568.3	1 630.3	
1978				163.3	2 431.6	766.3	1 665.2	1 730.9	
1979				123.2	2 554.7	836.4	1 718.4	1 786.2	
1980				94.2	2 647.1	900.2	1 747.0	1 812.1	
1981				117.0	2 764.1	968.8	1 795.3	1 864.8	
1982				118.7	2 882.8	1 029.7	1 853.1	1 924.6	
1983				39.0	2 921.8	1 095.6	1 826.2	1 898.7	
1984				40.5	2 962.3	1 163.9	1 798.4	1 872.2	
1985				42.6	3 004.9	1 236.7	1 768.3	1 840.0	
1986				21.8	3 026.7	1 306.6	1 720.1	1 790.3	
1987				0.0	3 026.7	1 375.0	1 651.7	1 713.7	
1988				64.6	3 091.3	1 463.5	1 627.7	1 673.7	
1989				107.8	3 199.0	1 549.3	1 648.7	1 689.2	
1990				87.8	3 286.8	1 639.4	1 647.4	1 694.2	
1991				57.6	3 344.4	1 718.2	1 626.2	1 669.7	
1992				72.5	3 416.9	1 822.1	1 594.7	1 637.6	
1993				58.6	3 475.5	1 940.5	1 534.9	1 573.7	
1994				74.2	3 549.7	2 059.3	1 490.3	1 526.3	
1995				123.0	3 672.7	2 183.9	1 488.8	1 521.8	
1996				10.9	3 683.5	2 305.5	1 378.1	1 410.1	
1997				33.1	3 716.6	2 432.7	1 283.9	1 314.4	
1998				93.0	3 809.6	2 569.8	1 239.9	1 269.3	
1999	38.5	40.5	30.7	109.7	3 919.3	2 712.1	1 207.2	1 228.7	

Table B.4 Summary of marketable natural gas reserves as of each year-end (10 9 m³)

	Changes			_	Remaining			
Year	New discoveries	Development	Revisions	Net changes	Initial established reserves	Cumulative production	Remaining established reserves ^a	reserves at 37.4 MJ/m ³
2000	50.3	76.5	17.5	144.3	4 063.5	2 852.8	1 210.7	1 221.1
2001	62.5	32.4	21.5	116.4	4 179.9	2 995.5	1 184.4	1 276.8
2002	83.4	60.4	-10.2	133.6	4 313.5	3 142.1	1 171.4	1 258.0
2003	89.4	53.8	-56.0	87.2	4 400.7	3 278.6	1 122.2	1 166.7
2004	55.5	64.5	25.9	145.9	4 546.6	3 419.6	1 127.0	1 172.3
2005	40.4	49.9	35.0	125.7	4 672.4	3 552.4	1 120.0	1 164.0
2006	83.4	48.4	-5.4	126.3	4 798.7	3 683.5	1 115.2	1 136.3
2007	71.0	30.0	-6.4	94.6	4 893.3	3 823.9	1 069.3	1 112.2
2008	69.3	31.3	54.8	155.4	5 048.7	3 950.5	1 098.2	1 142.3
2009	43.1	20.1	18.8	82.0	5 130.7	4 075.0	1 055.7	1 098.0
2010	24.3	25.3	33.2	82.8	5 213.5	4 188.4	1 025.1	1 065.7
2011	20.8	24.0	24.7	69.5	5 283.1	4 338.0	945.1	987.0
2012	16.2	8.0	33.8	58.0	5 341.1	4 425.4	915.7	957.2

Table B.4 (continued)

^a At field plant.

Table B.5 Natural gas reserves of multifield pools, 2012

Multifield pool Field and pool	Remaining established reserves (10 ⁶ m ³)	Mult Fi
MFP8515 Banff		Bu
Haro MFP8515 Banff	898	Cł
Rainbow MFP8515 Banff	6	Cł
Rainbow South MFP8515 Banff	76	CI
Total	171	Do
MFP8516 Viking		Do
Fenn West MFP8516 Viking	6	Fe
Fenn-Big Valley MFP8516 Viking	3	Ha
Total	9	La
MFP8524 Halfway		Ma
Valhalla MFP8524 Halfway	2 162	Ne
Wembley MFP8524 Halfway	1 910	W
Total	4 072	То
MFP8525 Colony		Com
Ukalta MFP8525 Colony	0	Bi
Whitford MFP8525 Colony	0	Pe
Total	0	То
MFP8528 Bluesky		Com
Rainbow MFP8528 Bluesky	105	Bo
Sousa MFP8528 Bluesky	562	Fe
Total	667	То
MFP8529 Bluesky-Detrital-Debolt		Com
Cranberry MFP8529 BL-DT-DB	175	Fa
Hotchkiss MFP8529 BL-DT-DB	357	M
Total	532	Pe
MFP8541 Second White Specks		Re
Cherry MFP8541 2WS	17	То
Granlea MFP8541 2WS	29	Com
Taber MFP8541 2WS	110	Al
Total	156	Be
Commingled MFP9502		Be
Ansell Commingled MFP9502	14 360	Bi Br
Edson Commingled MFP9502	1 955	
Medicine Lodge Commingled MFP9502	1 291	Di Ec
Minehead Commingled MFP9502	1 798	Fc
Sundance Commingled MFP9502	9 930	Ho
Wild River Commingled MFP9502	3	Ke
Total	29 337	Ki
Commingled MFP9503		Ki
Hairy Hill Commingled MFP9503	211	Ma
Willingdon Commingled MFP9503	10	Se
Total	221	Vi
Commingled MFP9504		W
Alix Commingled MFP9504	384	То
Bashaw Commingled MFP9504	1 954	
U		

Multifield pool Field and pool	Remaining established reserves (10 ⁶ m ³)
Buffalo Lake Commingled MFP9504	7
Chigwell Commingled MFP9504	88
Chigwell North Commingled MFP9504	134
Clive Commingled MFP9504	409
Donalda Commingled MFP9504	101
Dorenlee Commingled MFP9504	2
Ferintosh Commingled MFP9504	3
Haynes Commingled MFP9504	69
Lacombe Commingled MFP9504	7
Malmo Commingled MFP9504	365
Nevis Commingled MFP9504	1 385
Wood River Commingled MFP9504	116
Total	5 024
Commingled MFP9505	
Bigoray Commingled MFP9505	171
Pembina Commingled MFP9505	727
Total	898
Commingled MFP9506	
Bonnie Glen Commingled MFP9506	33
Ferrybank Commingled MFP9506	167
Total	200
Commingled MFP9508	
Fairydell-Bon Accord Commingled MFP9508	68
Peavey Commingled MFP9508	1
Redwater Commingled MFP9508	1 397
Total	1 460
Commingled MFP9509	
Albers Commingled MFP9509	4
Beaverhill Lake Commingled MFP9509	292
Bellshill Lake Commingled MFP9509	4
Birch Commingled MFP9509	6
Bruce Commingled MFP9509	648
Dinant Commingled MFP9509	0
Edberg Commingled MFP9509	0
Fort Saskatchewan Commingled MFP950	
Holmberg Commingled MFP9509	137
Kelsey Commingled MFP9509	90
Killam Commingled MFP9509	242
Killam North Commingled MFP9509	70
Mannville Commingled MFP9509	478
	6
Sedgewick Commingled MFP9509	
Viking-Kinsella Commingled MFP9509	1 512
	1 512 351 3 894

Table B.5 (continued)

Multifield pool Field and pool	Remaining established reserves (10 ⁶ m³)	Multifield pool Field and pool	Remaining established reserves (10 ⁶ m ³)
Commingled MFP9510		Commingled MFP9520	
Chickadee Commingled MFP9510	1 214	Gadsby Commingled MFP9520	3
Fox Creek Commingled MFP9510	892	Leahurst Commingled MFP9520	40
Kaybob South Commingled MFP9510	1 543	Total	43
Windfall Commingled MFP9510	0	Commingled MFP9522	
Total	3 649	Enchant Commingled MFP9522	205
Commingled MFP9511		Grand Forks Commingled MFP9522	8
Hudson Commingled MFP9511	50	Little Bow Commingled MFP9522	3
Sedalia Commingled MFP9511	131	Retlaw Commingled MFP9522	304
Total	181	Vauxhall Commingled MFP9522	
Commingled MFP9512		Total	543
Inland Commingled MFP9512	19	Commingled MFP9524	
Royal Commingled MFP9512	0	Stirling Commingled MFP9524	86
Total	19	Warner Commingled MFP9524	14
Commingled MFP9513		Total	100
Elmworth Commingled MFP9513	15 799	Commingled MFP9525	
Sinclair Commingled MFP9513	4 347	Resthaven Commingled MFP9525	1 982
Total	20 146	Smoky Commingled MFP9525	143
Commingled MFP9514		Total	2 125
Connorsville Commingled MFP9514	541	Commingled MFP9526	
Wintering Hills Commingled MFP9514	133	Garrington Commingled MFP9526	48
Total	674	Innisfail Commingled MFP9526	17
Commingled MFP9515		Markerville Commingled MFP9526	190
Craigmyle Commingled MFP9515	2	Medicine River Commingled MFP9526	181
Dowling Lake Commingled MFP9515	7	Penhold Commingled MFP9526	4
Garden Plains Commingled MFP9515	725	Sylvan Lake Commingled MFP9526	675
Hanna Commingled MFP9515	499	Tindastoll Commingled MFP9526	50
Provost Commingled MFP9515	3 738	Total	1 165
Racosta Commingled MFP9515	70	Commingled MFP9527	
Richdale Commingled MFP9515	371	Crystal Commingled MFP9527	37
Stanmore Commingled MFP9515	26	Gilby Commingled MFP9527	40
Sullivan Lake Commingled MFP9515	48	Minnehik-Buck Lake Commingled	184
Watts Commingled MFP9515	41	MFP9527	100
Total	5 527	Westerose South Commingled MFP9527	162
Commingled MFP9516		Wilson Creek Commingled MFP9527	<u> </u>
Knopcik Commingled MFP9516	442	Total	094
Valhalla Commingled MFP9516	29	Commingled MFP9529	
Total	471	Berland River Commingled MFP9529	23
Commingled MFP9517		Berland River West Commingled MFP9529	64
Comrey Commingled MFP9517	18	Cecilia Commingled MFP9529	5 667
Conrad Commingled MFP9517	93	Elmworth Commingled MFP9529	486
Forty Mile Commingled MFP9517	48	Fir Commingled MFP9529	11 157
Pendant D'Oreille Commingled MFP9517	491	Kaybob South Commingled MFP9529	8 238
		Oldman Commingled MFP9529	1 224
Smith Coulee Commingled MFP9517	398	Red Rock Commingled MFP9529	4 560

Table B.5 (continued)

Multifield pool	Remaining established reserves	Multifield pool	Remaining established reserves (10 ⁶ m ³)
Field and pool	(10 ⁶ m ³)	Field and pool	(10 ⁶ m ³)
Sundance Commingled MFP9529	298	Commingled MFP9501 (Southeast Alberta	• •
Wapiti Commingled MFP9529	25 357	Aerial Commingled MFP9501	94
Wild River Commingled MFP9529	18 102	Alderson Commingled MFP9501	14 638
Wildhay Commingled MFP9529	820	Armada Commingled MFP9501	36
Total	75 996	Atlee-Buffalo Commingled MFP9501	531
Commingled MFP9530		Badger Commingled MFP9501	36
Gilby Commingled MFP9530	218	Bantry Commingled MFP9501	19 164
Prevo Commingled MFP9530	41	Berry Commingled MFP9501	71
Total	259	Bindloss Commingled MFP9501	669
Commingled MFP9531		Blackfoot Commingled MFP9501	366
Nosehill Commingled MFP9531	1 387	Bow Island Commingled MFP9501	314
Oldman Commingled MFP9531	18	Brooks Commingled MFP9501	274
Pine Creek Commingled MFP9531	1 820	Carbon Commingled MFP9501	675
Total	3 225	Cavalier Commingled MFP9501	525
Commingled MFP9532		Cessford Commingled MFP9501	5 961
Grizzly Commingled MFP9532	153	Chain Commingled MFP9501	187
Waskahigan Commingled MFP9532	49	Connemara Commingled MFP9501	3
Total	202	Connorsville Commingled MFP9501	733
Commingled MFP9533		Countess Commingled MFP9501	35 380
Bigstone Commingled MFP9533	140	Craigmyle Commingled MFP9501	649
Placid Commingled MFP9533	752	Crossfield Commingled MFP9501	50
Total	892	Davey Commingled MFP9501	233
Commingled MFP9534		Delia Commingled MFP9501	352
Jenner Commingled MFP9534	1	Drumheller Commingled MFP9501	1 707
Princess Commingled MFP9534	0	Elkwater Commingled MFP9501	747
Total	1	Elnora Commingled MFP9501	246
Commingled MFP9536		Enchant Commingled MFP9501	11
Chinook Commingled MFP9536	130	Entice Commingled MFP9501	6 965
Dobson Commingled MFP9536	130	Erskine Commingled MFP9501	28
Heathdale Commingled MFP9536	10	Ewing Lake Commingled MFP9501	95
Kirkwall Commingled MFP9536	10	Eyremore Commingled MFP9501	761
Sedalia Commingled MFP9536	3	Fenn West Commingled MFP9501	118
Sounding Commingled MFP9536	5 75	Fenn-Big Valley Commingled MFP9501	1 002
Stanmore Commingled MFP9536	63	Gadsby Commingled MFP9501	520
Total	302	Gartley Commingled MFP9501	9
	502	Ghost Pine Commingled MFP9501	954
Commingled MFP9537		Gleichen Commingled MFP9501	375
Ferrier Commingled MFP9537	326	Herronton Commingled MFP9501	1 158
Pembina Commingled MFP9537	1 307	High River Commingled MFP9501	12
Willesden Green Commingled MFP9537		Hussar Commingled MFP9501	6 465
Total	1 896	Huxley Commingled MFP9501	416
Commingled MFP9538		Jenner Commingled MFP9501	1 972
Carrot Creek Commingled MFP9538	735	Joffre Commingled MFP9501	3
Edson Commingled MFP9538	608	Johnson Commingled MFP9501	197
Pembina Commingled MFP9535	224	Jumpbush Commingled MFP9501	453
Rosevear Commingled MFP9538	91	Kitsim Commingled MFP9501	39
Total	1 658	-	ed on next pa

Table B.5 (continued)

Multifield pool Field and pool	Remaining established reserves (10 ⁶ m ³)
Lathom Commingled MFP9501	2 220
Leckie Commingled MFP9501	594
Leo Commingled MFP9501	285
Little Bow Commingled MFP9501	0
Lomond Commingled MFP9501	70
Lone Pine Creek Commingled MFP9501	35
Long Coulee Commingled MFP9501	16
Majorville Commingled MFP9501	458
Matziwin Commingled MFP9501	877
Mcgregor Commingled MFP9501	24
Medicine Hat Commingled MFP9501	42 927
Michichi Commingled MFP9501	276
Mikwan Commingled MFP9501	432
Milo Commingled MFP9501	46
Newell Commingled MFP9501	1 510
Okotoks Commingled MFP9501	116
Pageant Commingled MFP9501	10
Parflesh Commingled MFP9501	871
PenholdCommingled MFP9501	3
Pollockville Commingled MFP9501	2
Princess Commingled MFP9501	8 274
Queenstown Commingled MFP9501	47
Rainier Commingled MFP9501	10
Redland Commingled MFP9501	598
Rich Commingled MFP9501	309
Rockyford Commingled MFP9501	1 748
Ronalane Commingled MFP9501	64
Rowley Commingled MFP9501	470
Rumsey Commingled MFP9501	29
Seiu Lake Commingled MFP9501	699
Shouldice Commingled MFP9501	640
Silver Commingled MFP9501	9
Stettler Commingled MFP9501	93
Stettler North Commingled MFP9501	27
Stewart Commingled MFP9501	5452
Suffield Commingled MFP9501	12 852
Swalwell Commingled MFP9501	428
Three Hills Creek Commingled MFP9501	722
Trochu Commingled MFP9501	513
Twining Commingled MFP9501	1 760
Verger Commingled MFP9501	4 741
Vulcan Commingled MFP9501	68
Wayne-Rosedale Commingled MFP9501	4 911
West Drumheller Commingled MFP9501	50
Wimborne Commingled MFP9501	739
Wintering Hills Commingled MFP9501	2 994
Workman Commingled MFP9501	64
Total	199 370

	Remaining reserves		Remaining established reserves of raw ethane			
Field	of marketable gas (10 ⁶ m³)	Ethane content (mol/mol)	Gas (10 ⁶ m³)	Liquid (10 ³ m ³)		
Ansell	15 487	0.082	1 399	4 972		
Brazeau River	8 572	0.069	702	2 495		
Caroline	5 464	0.085	627	2 231		
Cecilia	5 744	0.062	399	1 420		
Countess	37 306	0.007	284	1 009		
Dunvegan	6 168	0.044	299	1 062		
Edson	6 517	0.081	575	2 042		
Elmworth	20 903	0.060	1 356	4 820		
Ferrier	8 338	0.083	770	2 737		
Fir	12 238	0.057	754	2 682		
Garrington	3 474	0.076	313	1 113		
Gilby	4 007	0.071	316	1 124		
Golden Spike	2 221	0.127	414	1 472		
Harmattan East	7 379	0.085	703	2 499		
Judy Creek	3 515	0.157	689	2 450		
Kaybob	3 297	0.089	332	1 181		
Kaybob South	15 229	0.070	1 213	4 312		
Kakwa	9 361	0.082	839	2 985		
Leduc-Woodbend	2 903	0.142	491	1 746		
Medicine River	2 971	0.087	292	1 038		
Pembina	24 021	0.080	2 754	9 790		
Pine Creek	7 727	0.071	634	2 255		
Pouce Coupe South	7 693	0.047	401	1 425		
Rainbow	8 959	0.098	1 184	4 210		
Rainbow South	2 679	0.102	399	1 418		
Red Rock	5 294	0.059	333	1 185		
Redwater	3 629	0.092	470	1 671		
Ricinus	4 119	0.067	318	1 131		
Simonette	2 550	0.088	326	1 160		
Sinclair	8 556	0.050	470	1 671		
Sundance	10 827	0.072	839	2 983		
Swan Hills South	3 297	0.173	806	2 864		
Sylvan Lake	3 682	0.075	309	1 098		
Valhalla	6 874	0.073	552	1 963		
Westpem	3 166	0.100	355	1 261		

Table B.6 Remaining raw ethane reserves as of December 31, 2012

Table B.6 (continued)

	Remaining reserves		Remaining established	reserves of raw ethane
Field	of marketable gas (10 ⁶ m³)	Ethane content (mol/mol)	Gas (10 ⁶ m³)	Liquid (10 ³ m ³)
Westerose South	5 536	0.084	518	1 841
Wembley	2 642	0.093	301	1 071
Wapiti	29 225	0.055	1 705	6 063
Wild River	18 744	0.071	1 446	5 140
Willesden Green	19 511	0.087	2 284	8 121
Wilson Creek	4 088	0.073	338	1 202
Subtotal	363 913	0.070	29 509	104 907
All other fields	551 770	0.030	18 516	59 980
Total	915 683	0.047 ª	48 024	164 887

^a Volume weighted average.

	Remaining	(10 ³ m ³ liquid)				
	reserves of marketable					
Field	gas (10 ⁶ m³)	Propane	Butanes	Pentanes plus	Total liquids	
Ansell	15 487	2 298	1 215	2 558	6 071	
Ante Creek North	1 485	285	155	502	943	
Brazeau River	8 572	1 143	700	1 604	3 447	
Caroline	5 464	950	589	1 068	2 607	
Cecilia	5 744	442	185	650	1 277	
Dunvegan	6 168	514	298	504	1 317	
Edson	6 517	771	339	325	1 434	
Elmworth	20 903	1 562	717	778	3 057	
Fenn-Big Valley	2 399	921	400	109	1 430	
Ferrier	8 338	1 333	662	600	2 596	
Fir	12 238	1 013	490	680	2 183	
Garrington	3 474	491	253	365	1 109	
Gilby	4 007	564	287	309	1 160	
Golden Spike	2 221	1 212	160	563	1 935	
Harmattan East	7 379	1 004	597	945	2 546	
Hussar	8 426	386	209	230	824	
Judy Creek	3 515	1 660	684	389	2 733	
Kakwa	9 361	1 280	595	627	2 502	
Kaybob	3 297	631	309	347	1 286	
Kaybob South	15 229	1 949	1 010	1 270	4 229	
Leduc-Woodbend	2 903	1 481	853	481	2 815	
Medicine River	2 971	472	230	228	930	
Pembina	24 021	6 123	3 106	2 186	11 414	
Pine Creek	7 727	985	467	513	1 965	
Pouce Coupe South	7 693	530	288	294	1 112	
Provost	8 852	563	365	265	1 192	
Rainbow	8 959	1 828	1 010	1 041	3 879	
Rainbow South	2 679	734	340	409	1 482	
Redwater	3 629	1 248	782	311	2 342	
Ricinus	4 119	522	262	477	1 260	
Simonette	2 550	574	332	341	1 247	
Sinclair	8 556	585	248	254	1 087	
Sundance	10 827	1 074	466	419	1 959	
Swan Hills South	3 297	1 956	898	384	3 238	

Table B.7 Remaining raw reserves of natural gas liquids as of December 31, 2012

	Remaining reserves of		(10³ m³ l	iquid)	
Field	marketable gas (10 ⁶ m ³)	Propane	Butanes	Pentanes plus	Total liquids
Sylvan Lake	3 682	486	236	220	941
Valhalla	6 874	942	513	790	2 245
Virginia Hills	1 246	662	216	83	961
Wapiti	29 225	1 754	716	687	3 157
Waterton	5 132	251	221	1 396	1 868
Wayne-Rosedale	6 285	449	242	287	978
Wembley	2 642	579	340	762	1 681
Westerose South	5 536	973	469	465	1 907
Westpem	3 166	559	269	242	1 069
Wild River	18 744	1 700	703	1 041	3 444
Willesden Green	19 511	4 021	1 838	1 635	7 493
Wilson Creek	4 088	560	306	389	1 255
Subtotal	355 138	52 017	25 568	30 019	107 604
All other fields	560 545	23 027	12 968	15 483	51 478
Total	915 683	75 044	38 536	45 502	159 082

Table B.7 (continued)

Appendix C CD – Basic Data Tables

ERCB staff developed the databases used to prepare this reserves report and CD. Input was also obtained from the National Energy Board (NEB) through an ongoing process of crude oil, natural gas, and crude bitumen studies. The crude oil and natural gas reserves data tables present the official reserve estimates of both the ERCB and NEB for the province of Alberta.

C.1 Basic Data Tables

The conventional oil and conventional natural gas reserves and their respective basic data tables are included as Microsoft Excel spreadsheets for 2012 on the CD that accompanies this report (available for \$546 from ERCB Information Services). The individual oil and gas pool values are presented on the first worksheet of each spreadsheet. Oilfield and gas field/strike totals are on the second worksheet. Provincial totals for crude oil and natural gas are on the third worksheet. The pool names on the left side and the column headings at the top of the spreadsheets are locked into place to allow for easy scrolling. All crude oil and natural gas pools are listed first alphabetically by field/strike name and then stratigraphically within the field, with the pools occurring in the youngest reservoir rock listed first. Additionally, the crude bitumen in-place resources and basic data presented in **Tables B.1 and B.2** are included in Excel format on the CD.

C.2 Crude Oil Reserves and Basic Data

The crude oil reserves and basic data spreadsheet is similar to the data table in last year's report and contains all nonconfidential pools in Alberta.

Reserves data for single- and multi-mechanism pools are presented in separate columns. The total record contains the summation of the multi-mechanism pool reserves data. These data appear in the pool column, which can be used for determining field and provincial totals. The mechanism type is displayed with the names.

Provincial totals for light-medium and heavy oil pools are presented separately on the provincial total worksheet.

C.3 Natural Gas Reserves and Basic Data

The natural gas reserves and basic data spreadsheet in this report is similar to last year's report and contains all nonconfidential pools in Alberta.

Basic reserves data are split into two columns: pools (individual, undefined, and total records) and member pools (separate gas pools overlying a single oil pool or individual gas pools that have been commingled). The total record contains a summation of the reserves data for all of the related members. Individual pools have a sequence code of 000; undefined pools have a pool code ending in 98 and a unique pool sequence code other than 000; and the total records have a sequence code of 999. Member pools and the total record have the same pool code, with each member pool having a unique pool sequence code and the total record having a sequence code of 999.

C.4 Crude Bitumen Resources and Basic Data

The Crude Bitumen In-Place Resources and Basic Data spreadsheet is similar to the data tables in last year's report. The oil sands area, oil sands deposit, overburden/zone, oil sands sector/pool, and resource determination method are listed in separate columns.

General Abbreviations Used in the Reserves and Basic Data Files

ABAND	abandoned
ADMIN 2	Administrative Area No. 2
ASSOC	associated gas
BDY	boundary
BELL	Belloy
BER	beyond economic reach
BLAIR	Blairmore
BLSKY OR BLSK	Bluesky
BLUE	Blueridge
BNFF	Banff
BOW ISL or BI	Bow Island
BR	Belly River
BSL COLO	Basal Colorado
BSL MANN, BMNV or BMN	Basal Mannville
BSL QTZ	Basal Quartz
CADM or CDN	Cadomin
CARD	Cardium
CDOT	Cadotte
CHLK	Charlie Lake
CLWTR	Clearwater
CLY or COL	Colony
CMRS	Camrose
COMP	compressibility
DBLT	Debolt
DETR	Detrital
DISC YEAR	discovery year
ELRSL, ELERS or ELRS	Ellerslie
ELTN or ELK	Elkton
FALH	Falher
FRAC	fraction
GEN PETE or GEN PET	General Petroleum
GETH or GET	Gething
GLAUC or GLC	Glauconitic
GLWD	Gilwood
GOR	gas-oil ratio
GRD RAP or GRD RP	Grand Rapids

	gross heating value
GSMT	Grosmont
ha	hectare
HFWY	Halfway
INJ	injected
I.S.	integrated scheme
JUR or J	Jurassic
КВ	kelly bushing
KISK	Kiskatinaw
KR	Keg River
LED	Leduc
LF	load factor
LIV	Livingston
LLOYD	Lloydminster
LMNV, LMN or LM	Lower Mannville
LOC EX PROJECT	local experimental project
LOC U	local utility
LOW or L	lower
LUSC	Luscar
MANN or MN	Mannville
МСМ	McMurray
MED HAT	Medicine Hat
MID or M	middle
MILK RIV	Milk River
MSKG	Muskeg
MSL	mean sea level
NGL	natural gas liquids
NIKA	Nikanassin
NIS	Nisku
NO.	number
NON-ASSOC	nonassociated gas
NORD	Nordegg
NOTIK, NOTI or NOT	Notikewin
OST	Ostracod
PALL	Palliser
PEK	Pekisko
PM-PN SYS	Permo-Penn System
RF	recovery factor
RK CK	Rock Creek
RUND or RUN	Rundle
SA	strike area
SATN	saturation
SD	sandstone

SE ALTA GAS SYS (MU)	Southeastern Alberta Gas System - commingled
SG	gas saturation
SHUN	Shunda
SL	surface loss
SL PT	Slave Point
SOLN	solution gas
SPKY	Sparky
ST. ED	St. Edouard
SULPT	Sulphur Point
SUSP	suspended
SW	water saturation
SW HL	Swan Hills
TEMP	temperature
тот	total
TV	Turner Valley
TVD	true vertical depth
UIRE	Upper Ireton
UMNV, UMN or UM	Upper Mannville
UP or U	upper
VIK or VK	Viking
VOL	volume
WAB	Wabamun
WBSK	Wabiskaw
WINT	Winterburn
WTR DISP	water disposal
WTR INJ	water injection
1ST WHITE SPKS or 1WS	First White Specks
2WS	Second White Specks

Appendix D Drilling Activity in Alberta

		[Explorate	ory		Total						
	Successful	Crude	bitumen			Succesful	Crude			Successful	Crude		
Year	oil	Commercial	Experimental	Gas	Total ^a	oil	bitumen⁵	Gas	Total ^a	oil	bitumen	Gas	Total ^a
Pre-1972	11 873	*	**	7 869	24 325	1 624	**	3 619	31 639	13 497	**	11 488	55 964
1972	438	*	**	672	1 468	69	**	318	1 208	507	**	990	2 676
1973	472	*	**	898	1 837	109	**	476	1 676	581	**	1 374	3 513
1974	553	*	**	1 222	2 101	82	**	446	1 388	635	**	1 668	3 489
1975	583	*	**	1 367	2 266	81	**	504	1 380	664	**	1 871	3 646
1976	440	*	**	2 044	2 887	112	**	1 057	2 154	552	**	3 101	5 041
1977	524	*	**	1 928	2 778	178	**	1 024	2 352	702	**	2 952	5 130
1978	708	*	**	2 091	3 186	236	**	999	2 387	944	**	3 090	5 573
1979	953	*	**	2 237	3 686	297	**	940	2 094	1 250	**	3 177	5 780
1980	1 229	*	**	2 674	4 425	377	**	1 221	2 623	1 606	**	3 895	7 048
1981	1 044	*	**	2 012	3 504	381	**	1 044	2 337	1 425	**	3 056	5 841
1982	1 149	*	**	1 791	3 353	414	**	620	1 773	1 563	**	2 411	5 126
1983	1 823	*	**	791	2 993	419	**	300	1 373	2 242	**	1 091	4 366
1984	2 255	*	**	911	3 724	582	**	361	1 951	2 837	**	1 272	5 675
1985	2 101	975	229	1 578	5 649	709	593	354	2 827	2 810	1 797	1 932	8 476
1986	1 294	191	75	660	2 783	452	171	311	1 726	1 746	437	971	4 509
1987	1 623	377	132	549	3 212	553	105	380	1 970	2 176	614	929	5 182
1988	1 755	660	54	871	4 082	526	276	610	2 535	2 281	990	1 481	6 617
1989	869	37	24	602	1 897	382	246	660	2 245	1 251	307	1 262	4 142
1990	804	69	30	715	1 999	401	122	837	2 308	1 205	221	1 552	4 307
1991	1 032	91	13	544	2 089	346	51	566	1 808	1 378	155	1 110	3 897

Table D.1 Development and exploratory wells, pre-1972-2012; number drilled annually

(continued on next page)

Table D.1 (continued)

			Development				Explorat	ory		Total				
	Successful	Crude	Crude bitumen			Succesful	Crude			Successful	Crude			
Year	oil	Commercial	Experimental	Gas	Total ^a	oil	bitumen⁵	Gas	Total ^a	oil	bitumen	Gas	Total ^a	
1992	1 428	101	2	335	2 306	368	13	387	1 497	1 796	116	722	3 803	
1993	2 402	290	6	1 565	4 919	549	5	763	2 350	2 951	301	2 328	7 269	
1994	1 949	143	0	2 799	5 876	700	53	1 304	3 250	2 649	196	4 103	9 126	
1995	2 211	828	1	1 910	5 939	496	222	872	2 542	2 707	1 051	2 782	8 481	
1996	2 987	1 675	15	1 932	7 728	583	459	732	2 668	3 570	2 149	2 664	10 396	
1997	4 210	2 045	8	2 704	10 275	837	645	614	2 937	5 047	2 698	3 318	13 212	
1998	1 277	270	6	3 083	5 166	386	500	1 430	3 007	1 663	776	4 513	8 173	
1999	1 311	502	0	4 679	6 988	285	351	1 620	2 905	1 596	853	6 299	9 893	
2000	2 052	890	2	5473	8 955	466	576	2 033	3 690	2 518	1 468	7 506	12 645	
2001	1 703	818	4	7 089	10 127	418	1 115	2 727	4 927	2 121	1 937	9 816	15 054	
2002	1 317	1 056	8	5 921	8 586	345	1 222	2 246	4 231	1 662	2 286	8 167	12 817	
2003	1 922	1 000	0	9 705	12 982	441	1 610	2 877	5 328	2 363	2 610	12 582	18 310	
2004	1 516	859	0	10 768	13 502	486	1 739	3 179	5 742	2 002	2 598	13 947	19 244	
2005	1 748	1 158	2	11 157	14 559	554	1 496	3 454	5 825	2 302	2 656	14 611	20 384	
2006	1 583	1 147	0	9 883	12 975	601	2 195	3 258	6 323	2 184	3 342	13 141	19 298	
2007	1 376	1 376	0	8 174	11 314	393	2 919	1 738	5 388	1 769	4 295	9 912	16 702	
2008	1 420	1 205	4	6 838	9 945	300	3 428	1 099	5 076	1 720	4 637	7 937	15 021	
2009	785	941	0	3 000	5 050	126	1 270	398	1 930	911	2 211	3 398	6 980	
2010	1 979	1 336	0	3 408	7 103	280	1 331	391	2 130	2 259	2 697	3 799	9 233	
2011	2 748	1 748	0	1 857	6 820	367	2 372	228	3 074	3 115	4 121	2 085	9 894	
2012	2 534	1 787	0	841	5 860	283	2 050	142	2 562	2 817	3 837	983	8 422	
Total	73 980	23 605	615	137 147	261 219	17 594	27 135	48 139	149 136	91 574	51 356	185 286	410 355	

Source: pre-1972—ERCB corporate database; 1972–1999—Alberta Oil and Gas Industry Annual Statistics (ST17); 2000–2012—Alberta Drilling Activity Monthly Statistics (ST59).

^a Includes unsuccessful, service, and suspended wells.

^b Includes oil sands evaluation wells and exploratory wells licensed to obtain crude bitumen production.

* Included in oil.

**Not available.

			Explorate	ory		Total							
Veer	Successful		bitumen	Gas	Totalª	Succesful	Crude bitumen⁵	Gas	Totalª	Successful oil	Crude bitumen	Gas	Totola
Year		Commercial *	Experimental										Total ^a
Pre-1972	18 843			11 640	36 991	2 611	**	4 059	26 556	21 459	**	15 699	63 547
1972	608	*	**	461	1 503	99	**	350	1 569	707	**	811	3 072
1973	659	*	**	635	2 053	127	**	465	1 802	786	**	1 100	3 855
1974	708	*	**	816	2 076	115	**	465	1 580	823	**	1 281	3 656
1975	686	*	**	1 020	2 192	107	**	494	1 457	793	**	1 514	3 649
1976	564	*	**	1 468	2 910	147	**	897	1 965	711	**	2 365	4 875
1977	668	*	**	1 299	2 926	188	**	1 029	2 324	856	**	2 328	5 250
1978	934	*	**	1 463	3 298	333	**	1 267	2 828	1 267	**	2 730	6 126
1979	1 387	*	**	1 713	3 840	507	**	1 411	3 073	1 894	**	3 124	6 913
1980	1 666	*	**	2 134	4 716	614	**	1 828	3 703	2 280	**	3 962	8 419
1981	1 270	*	**	1 601	3 598	573	**	1 442	3 172	1 843	**	3 043	6 770
1982	1 570	*	**	1 280	3 601	670	**	747	2 305	2 240	**	2 027	5 906
1983	2 249	*	**	758	3 834	610	**	407	1 819	2 859	**	1 165	5 653
1984	2 768	*	**	776	4 823	774	**	464	2 407	3 542	**	1 240	7 230
1985	3 030	577	123	1 389	6 373	1 048	99	465	2 962	4 078	799	1 854	9 335
1986	2 000	116	37	742	3 809	622	41	398	2 037	2 622	194	1 140	5 846
1987	2 302	209	68	730	4 250	793	16	518	2 486	3 095	293	1 248	6 736
1988	2 318	376	31	1 049	5 018	695	65	739	2 870	3 013	472	1 788	7 888
1989	1 130	24	13	733	2 622	382	33	747	2 353	1 512	70	1 480	4 975
1990	1 099	46	22	886	2 834	479	18	860	2 339	1 578	86	1 746	5 173
1991	1 307	62	6	641	2 720	346	14	615	1 979	1 653	82	1 256	4 699
1992	1 786	65	2	399	2 965	470	4	409	1 650	2 256	71	808	4 615
1993	3 044	193	7	1 616	5 850	695	2	773	2 585	3 739	202	2 389	8 435

Table D.2 Development and exploratory wells, pre-1972-2012; kilometres drilled annually

(continued on next page)

Table D.2 (continued)

			Explorat	ory		Total							
	Successful	Crude bitumen				Succesful	Crude			Successful	Crude		
Year	oil	Commercial	Experimental	Gas	Total ^a	oil	bitumen ^b	Gas	Totalª	oil	bitumen	Gas	Total ^a
1994	2 696	96	0	2 876	6 958	922	11	1 389	3 702	3 618	107	4 265	10 660
1995	2 856	620	1	1 969	6 702	624	52	995	2 791	3 480	673	2 964	9 493
1996	3 781	1 202	13	2 030	8 372	724	148	814	2 733	4 505	1 363	2 844	11 105
1997	5 380	1 561	8	2 902	11 383	1 080	142	733	2 928	6 460	1 711	3 635	14 311
1998	1 839	445	8	3 339	6 398	537	119	1 780	3 216	2 376	572	5 119	9 614
1999	1 566	401	0	4 319	6 838	390	60	1 620	3 041	1 956	461	5 939	9 879
2000	2 820	940	2	5 169	9 638	582	131	2 486	3 931	3 402	1 073	7 655	13 569
2001	2 454	834	25	6 846	10 840	603	253	3 219	4 857	3 057	1 112	10 065	15 697
2002	1 852	1 043	2	5 983	9 272	462	315	2 541	3 813	2 314	1 360	8 524	13 085
2003	2 727	1 032	0	9 610	13 825	573	388	3 347	4 799	3 300	1 420	12 957	18 624
2004	2 095	1 000	0	10 767	14 284	663	354	3 905	5 297	2 758	1 354	14 672	19 581
2005	2 534	1 353	3	11 519	16 009	792	338	4 616	6 117	3 326	1 694	16 135	22 126
2006	2 263	1 305	0	10 549	14 549	903	496	4 720	6 477	3 166	1 801	15 269	21 026
2007	2 045	1 550	0	8 447	12 469	623	751	2 731	4 582	2 668	2 301	11 178	17 051
2008	2 159	1 379	2	7 790	11 758	447	929	1 726	3 478	2 606	2 310	9 516	15 236
2009	1 257	1 033	0	3 852	6 468	194	380	804	1 619	1 451	1 413	4 656	8 087
2010	3 809	1 336	0	5 134	10 653	514	461	848	1 965	4 323	1 797	5 982	12 618
2011	6 106	1 720	0	4 071	12 425	676	870	594	2 373	6 782	2 590	4 665	14 798
2012	6 218	2 179	0	2 536	11 630	591	782	435	2 018	6 809	2 961	2 971	13 648
Total	109 053	22 698	373	144 956	315 273	24 905	7 272	60 152	147 557	133 963	30 343	205 109	462 830

Source: pre-1972—ERCB corporate database; 1972–1999—Alberta Oil and Gas Industry Annual Statistics (ST17); 2000–2012—Alberta Drilling Activity Monthly Statistics (ST59).

^a Includes unsuccessful, service, and suspended wells.

^b Includes oil sands evaluation wells and exploratory wells licensed to obtain crude bitumen production.

* Included in oil.

**Not available.

Appendix E Crude Bitumen Pay Thickness and Geological Structure Contour Maps

This appendix contains geological maps from the Crude Bitumen section that have appeared in previous *ST98* reports. These are the maps that the most recent determinations of in-place resources are based on. Any new mapping will be described in the main body of *ST98* in the first year of reporting.

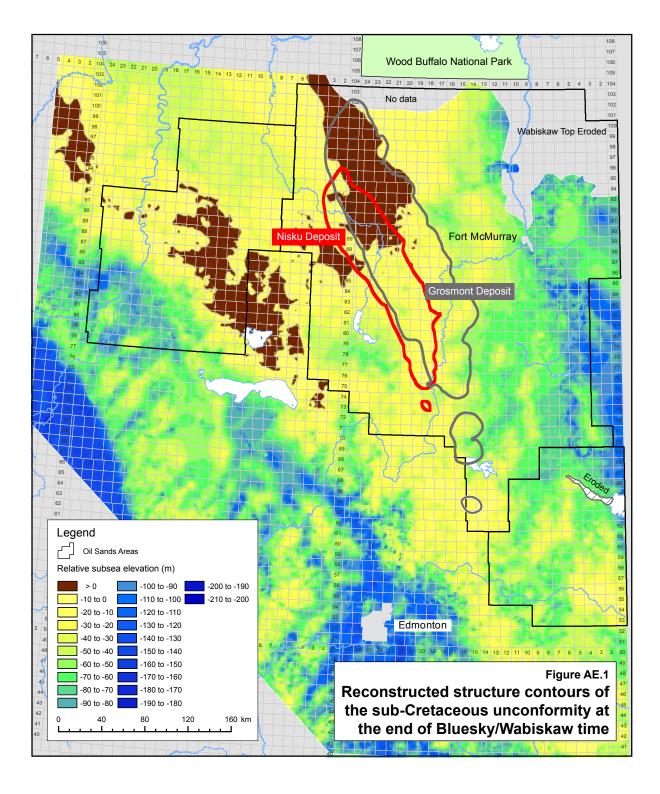
E.1 Regional Map

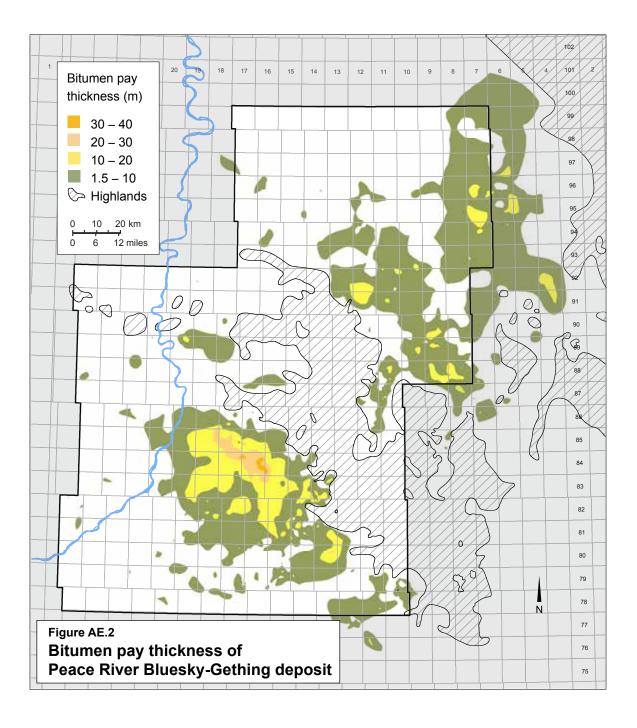
E.1.1 Sub-Cretaceous Unconformity

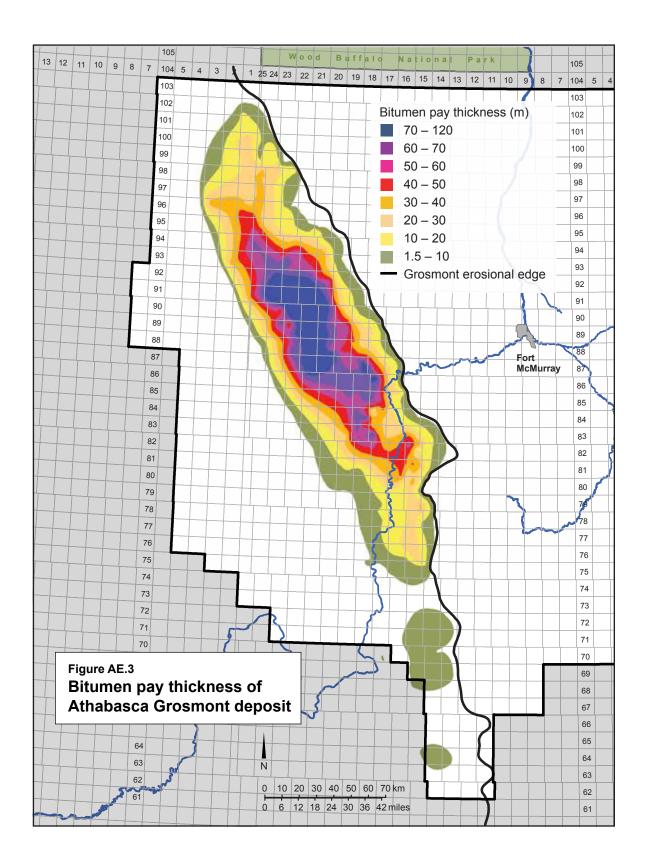
The sub-Cretaceous unconformity is the stratigraphic surface that forms the base on which the bitumen-bearing Cretaceous sediments were deposited. **Figure AE.1** is a structure contour map of that surface as it would have appeared at the end of Bluesky/Wabiskaw time. The parts of the Nisku and Grosmont formations that are bitumen bearing are outlined on this map. These Devonian carbonate formations subcrop along the sub-Cretaceous surface and contain bitumen in an updip location along the subcrop edge. Of particular note are the areas on this map identified as having a relative subsea elevation of greater than zero. These areas were still emergent at the end of Bluesky/Wabiskaw time and would have existed as islands within the transgressing northern Boreal Sea.

E.2 Peace River Oil Sands Area

E.2.1 Peace River Bluesky-Gething Deposit


The Bluesky-Gething deposit was reassessed for year-end 2006. **Figure AE.2** is the bitumen pay thickness map for the Bluesky-Gething deposit based on cutoffs of 6 mass per cent and 1.5 metres (m) thickness. The Bluesky-Gething is mapped as a single bitumen zone so that the full extent of the deposit at 6 mass per cent can be shown. Also shown on **Figure AE.2** are the paleotopographic highlands as they would have existed at the time of the end of the deposition of the Bluesky Formation. These highlands, composed of carbonate rocks of Devonian and Mississippian age, controlled the deposition of the Bluesky and correspondingly the extent of the reservoir. Oil migrated updip became trapped beneath the overlying Wilrich shales and against the highlands, where it was eventually biodegraded into bitumen.


E.3 Athabasca Oil Sands Area


E.3.1 Athabasca Grosmont Deposit

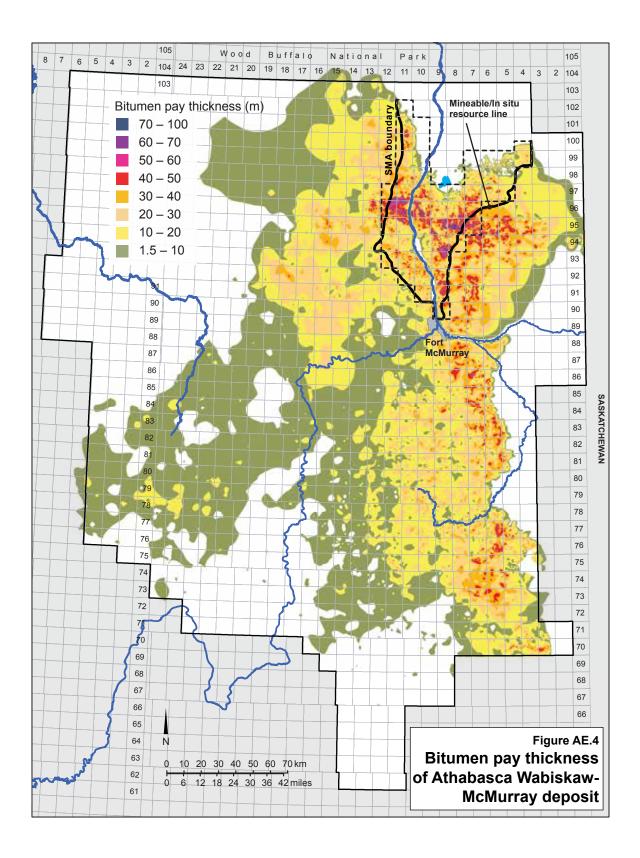
In 2009, the ERCB updated the previous (1990) resource assessment of the Athabasca Grosmont deposit. Over 1330 wells were used within the study area, which extended from Township 62 to 103 and Range 13, West of the 4th Meridian, to Range 6, West of the 5th Meridian. In its resource assessment, the ERCB included the bitumen from the Upper Ireton Formation. The Grosmont and the Ireton formations are considered to be in hydraulic communication.

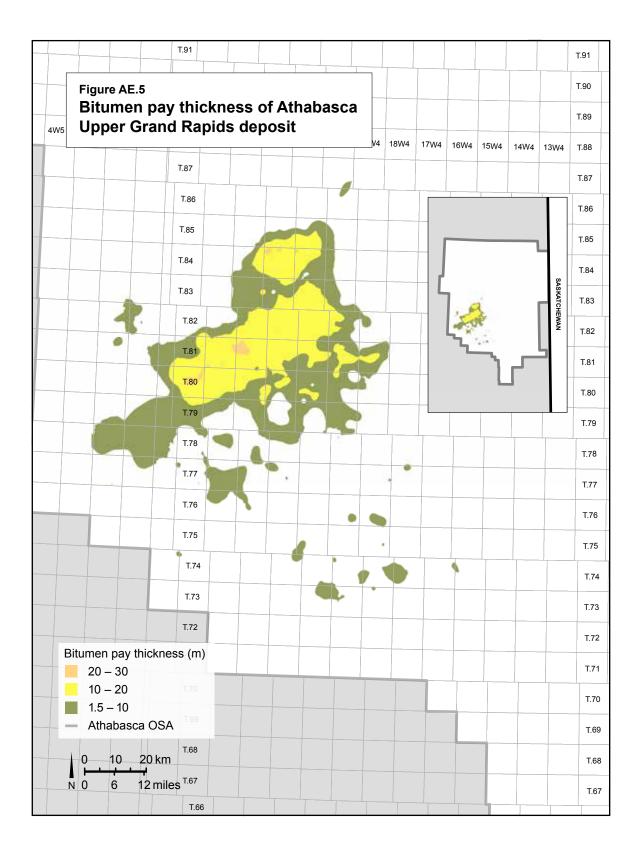
The Grosmont Formation is a late-Devonian shallow-marine to peritidal platform carbonate consisting of four recognizable units within the deposit: the Grosmont A, B, C, and D. All of the hydrocarbons are located in an updip position, structurally trapped along the erosional edge and contained by the overlying Clearwater Formation. **Figure AE.3** is the cumulative bitumen net pay isopachs for the entire Grosmont deposit.

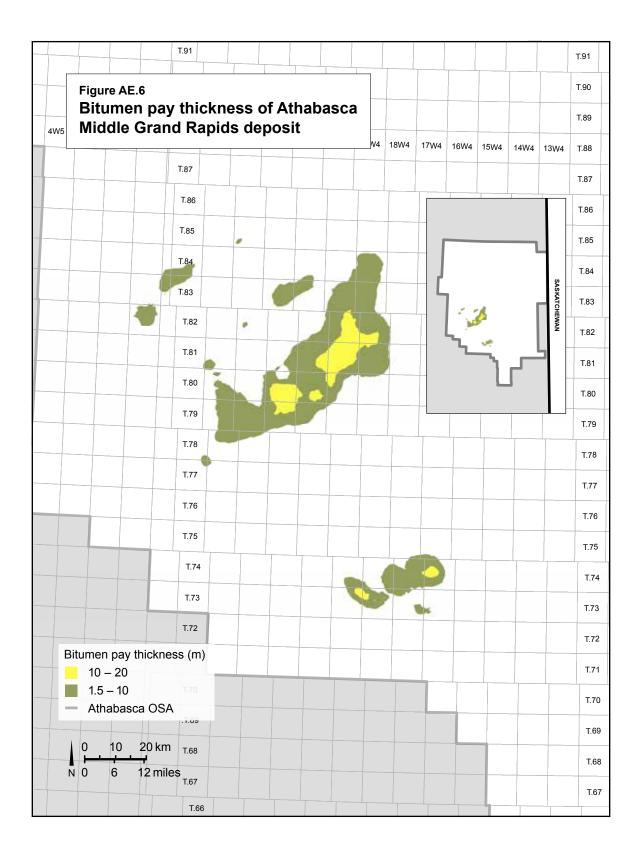
E.3.2 Athabasca Wabiskaw-McMurray Deposit

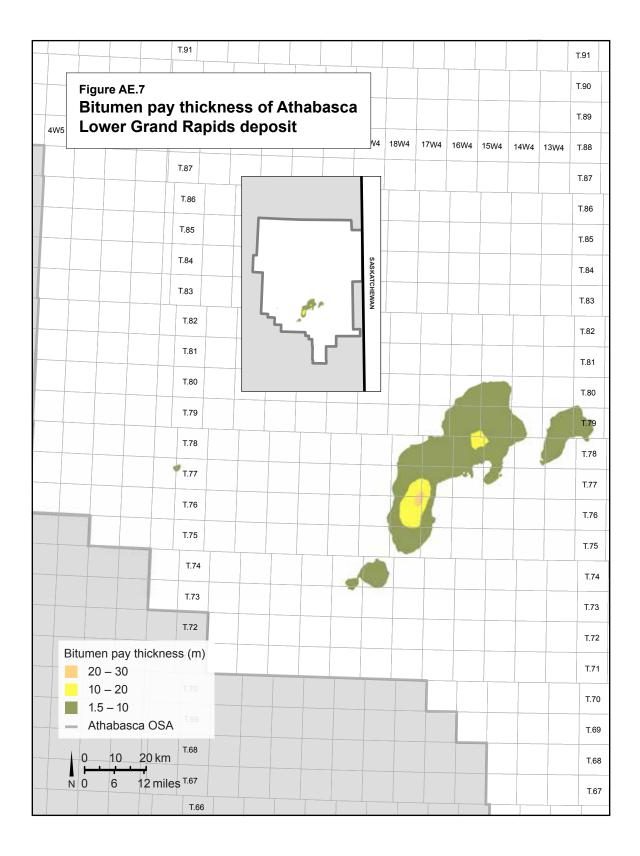
In 2003, the ERCB completed a reassessment of the Wabiskaw-McMurray using geological information from over 13 000 wells and bitumen content evaluations from over 9000 wells to augment the over 7000 boreholes already assessed within the surface mineable area (SMA; see below for details). In 2005 and 2007, nearly 700 and 2700 new wells respectively, mostly outside the SMA, were added to the reassessment, and the volumes and maps were revised. In 2008, about 2500 additional wells outside the SMA and about 18 000 wells inside the SMA were added. In 2009, about 1700 wells, including about 350 from within the SMA, were added.

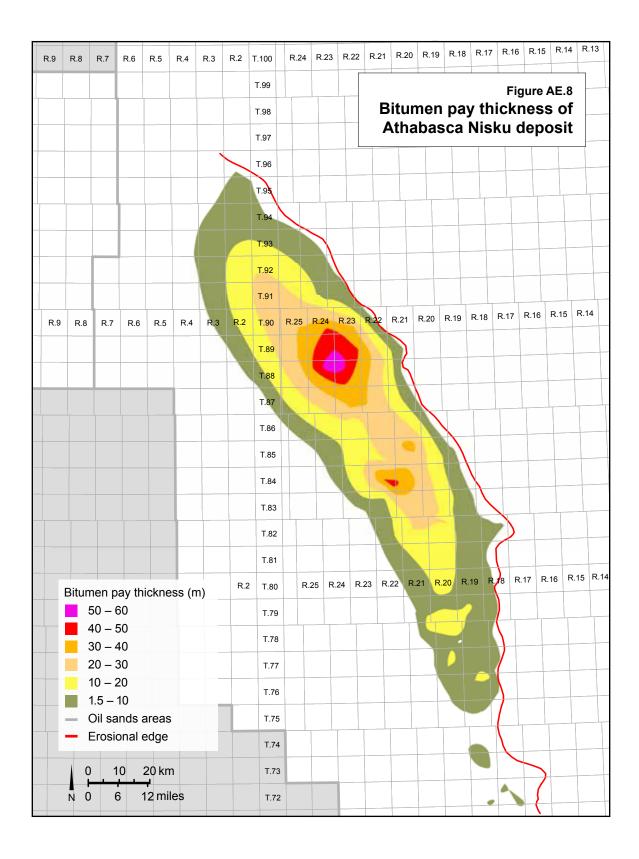
Figure AE.4 is a bitumen pay thickness map of the Wabiskaw-McMurray deposit revised for year-end 2009 based on cutoffs of 6 mass per cent and 1.5 m thickness. In this map, the deposit is treated as a single bitumen zone and the pay is accumulated over the entire geological interval. Also shown is the extent of the SMA, an ERCB-defined area of 51½ townships north of Fort McMurray covering that part of the Wabiskaw-McMurray deposit where the total overburden thickness generally does not exceed 65 m. This designation is for resource administration purposes and carries no regulatory authority. That is to say that while mining activities are likely to be confined to the SMA, they may occur outside the area's boundaries, while in situ activities may occur within the SMA. Because the extent of the SMA is defined using township boundaries, it incorporates a few areas containing deeper bitumen resources that are more amenable to in situ recovery. The ERCB has generated a line that generally separates the mineable portion of the deposit from the in situ portion, and that line is shown in **Figure AE.4**.


E.3.3 Athabasca Upper, Middle, and Lower Grand Rapids Deposits


The 2011 year-end review for the three Athabasca Grand Rapids deposits (Upper, Middle, and Lower), **Figures AE.5, AE.6**, and **AE.7**, included an evaluation of 3575 wells for stratigraphic tops and 1887 for reservoir parameters. The study area covered Townships 73 to 87 within Range 17, West of the 4th Meridian, to Range 1, West of the 5th Meridian. The reassessment resulted in in-place bitumen resources being increased from 8678 10⁶ m³ to 9274 10⁶ m³ for the Grand Rapids deposits. This represents a 7 per cent increase, which is attributed to an increased number of wells drilled in the area.


The Grand Rapids Formation is interpreted as a series of prograding sequences of shoreface sands and shales. Informally the formation has been divided into Upper, Middle, and Lower sequences, with the boundaries defined by laterally extensive marine shales (maximum flooding surfaces). The Athabasca Upper Grand Rapids accounts for the majority (approximately 60 per cent) of the bitumen-bearing sand within this formation (**Table 3.3**). The Grand Rapids Formation is bounded above and below by the marine shales of the Joli Fou and Clearwater formations, respectively.


E.3.4 Athabasca Nisku Deposit


The 2011 year-end review of the Athabasca Nisku Formation, **Figure AE.8**, included an evaluation of 560 wells for stratigraphic tops and 130 wells for reservoir parameters. The ERCB, in its evaluation of the Nisku Formation, included bitumen from the Blueridge Formation. The Calmar Formation is a shale within this deposit. Information to date indicates that the Calmar Formation is a potential baffle. The study area covered Townships 75 to 96

within Range 18, West of the 4th Meridian, to Range 4, West of the 5th Meridian. The reassessment resulted in in-place bitumen resources being increased from 10 330 10⁶ m³ to 16 232 10⁶ m³. This represents a 57 per cent increase, which is attributed to an increase in well data and the expansion of the delineated resource area.

The Nisku Formation is a late-Devonian shelf carbonate. Early dolomitization and subsequent leaching of meteoric waters led to karsting and the creation of vugs and caves. The Nisku is a naturally fractured reservoir. Similar to the Grosmont Formation, the bitumen in the Nisku is contained in a triple porosity system within the vugs, the fractures, and the rock matrix. Hydrocarbons were probably trapped structurally along the updip erosional edge before degradation to bitumen.

E.4 Cold Lake Oil Sands Area

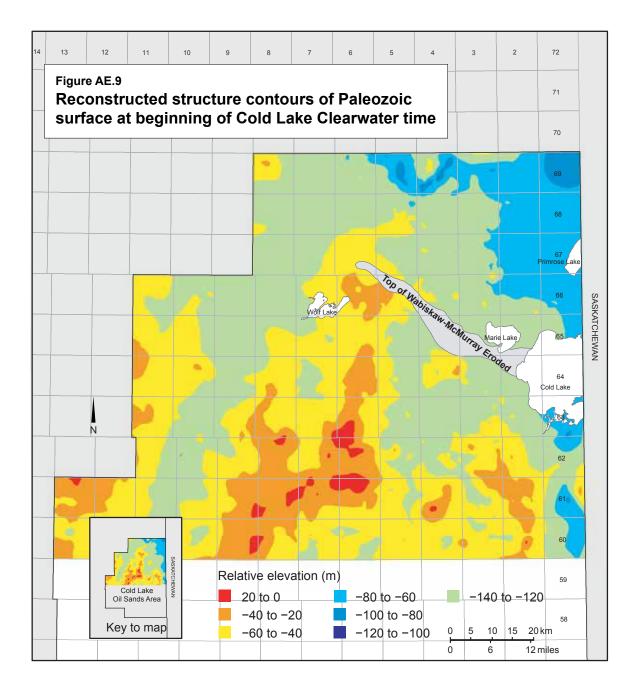
E.4.1 Sub-Cretaceous Unconformity

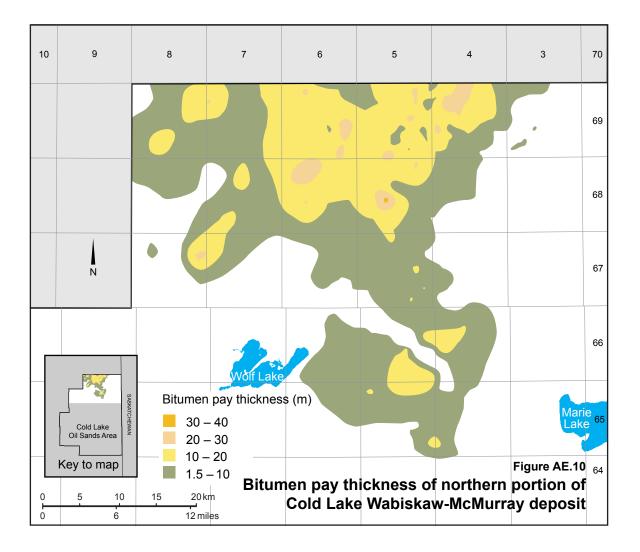
Figure AE.9 is a map of the reconstructed structure contours for the sub-Cretaceous unconformity in the northern part of the Cold Lake Oil Sands Area as they would have been at the beginning of deposition of the Mannville Clearwater Formation.

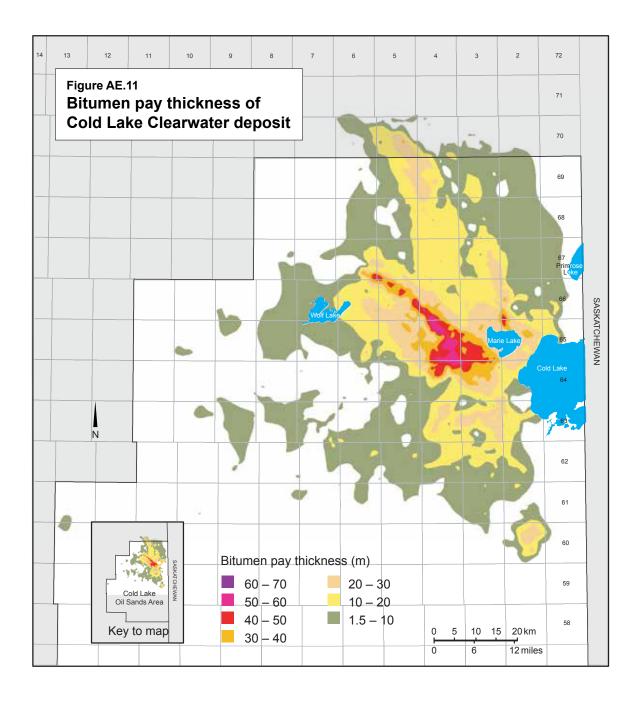
E.4.2 Cold Lake Wabiskaw-McMurray Deposit

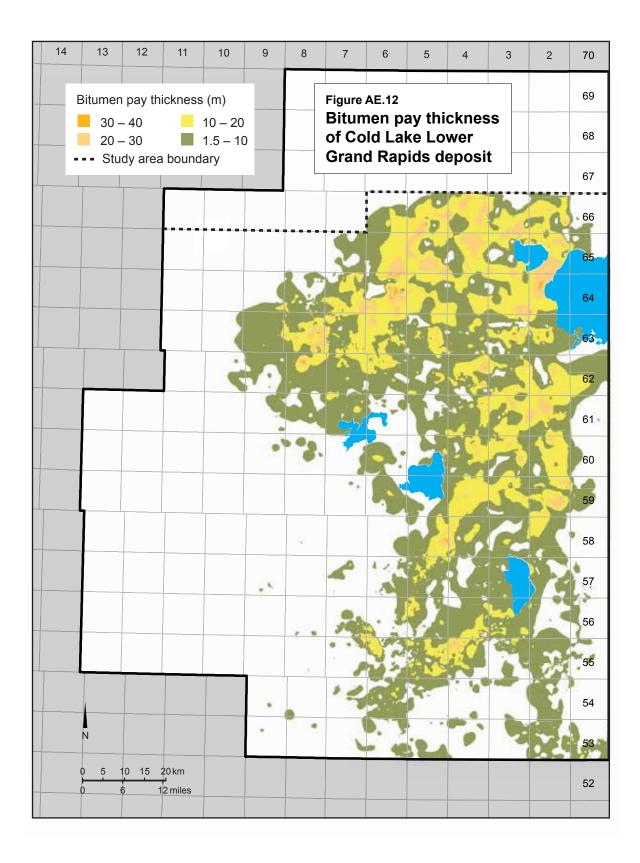
For year-end 2005, the ERCB reassessed the northern portion of the Cold Lake Wabiskaw-McMurray deposit. Stratigraphic information and detailed petrophysical evaluations from almost 400 wells were used in this reassessment. **Figure AE.10** is the bitumen pay thickness map for the Cold Lake Wabiskaw-McMurray deposit based on cutoffs of 6 mass per cent and 1.5 m thickness. Although the Wabiskaw-McMurray contains some regionally mappable internal seals, and therefore several bitumen zones, this map was produced as a single bitumen zone to provide a regional overview of the distribution of the bitumen-saturated sands. A cutoff of 6 mass per cent bitumen was used.

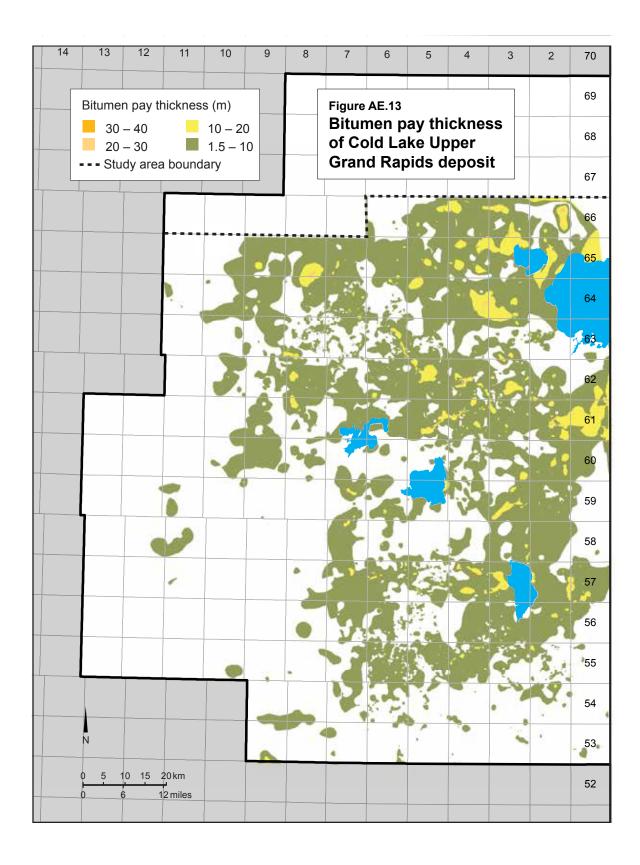
E.4.3 Cold Lake Clearwater Deposit

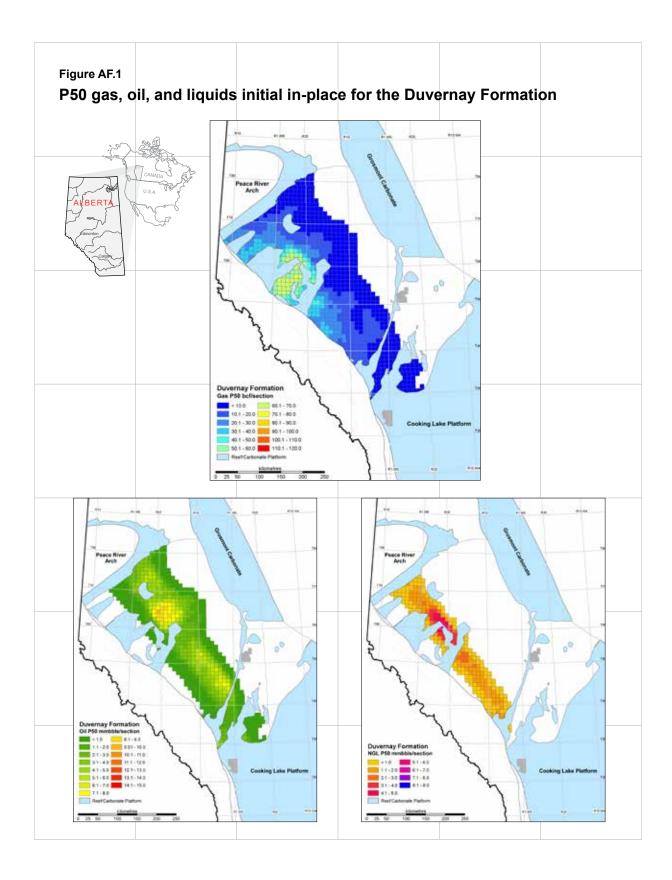

For year-end 2005, the ERCB completed a reassessment of the Clearwater deposit. **Figure AE.11** is a bitumen pay thickness map for the Clearwater deposit based on cutoffs of 6 mass per cent and 1.5 m thickness. As the Clearwater does not contain regionally mappable internal shales or mudstones that can act as seals, the deposit is mapped as a single bitumen zone.

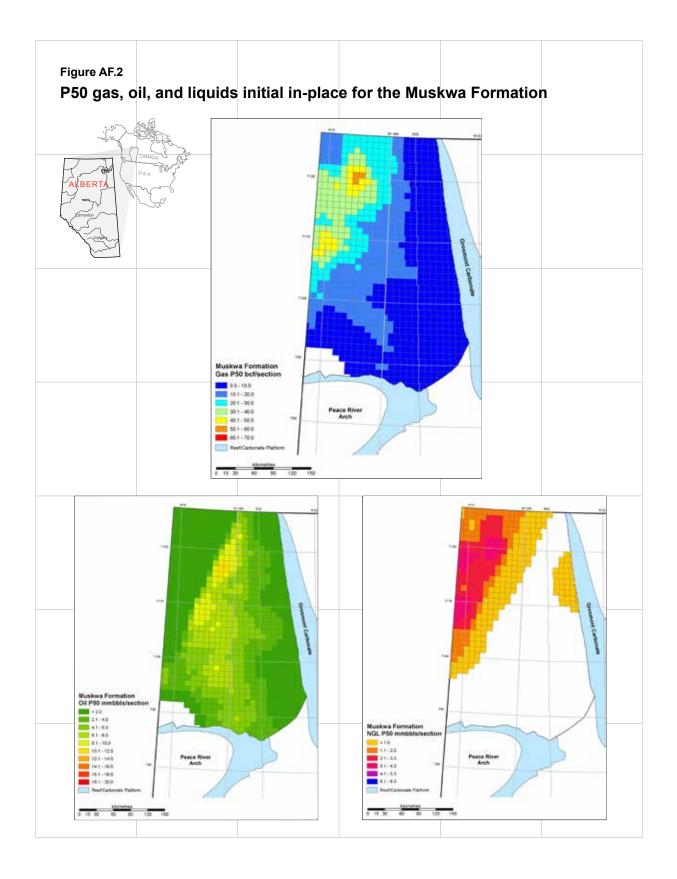

E.4.4 Cold Lake Upper and Lower Grand Rapids Deposits

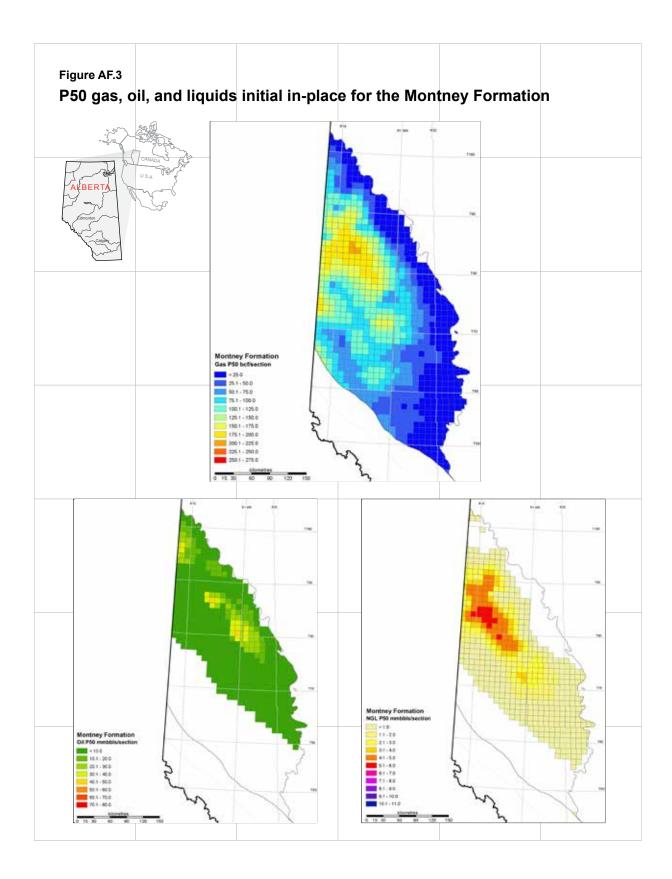

A reassessment for year-end 2009 of the Upper and Lower Grand Rapids deposits included a review of some 12 000 wells for stratigraphic tops and net pay. The study area from Township 52 to 66 replaced the area used in the previous assessment. Stratigraphy and net pay determination were completed for each Grand Rapids zone: Colony, McLaren, Waseca, Sparky, General Petroleum (GP), Rex, and Lloydminster.

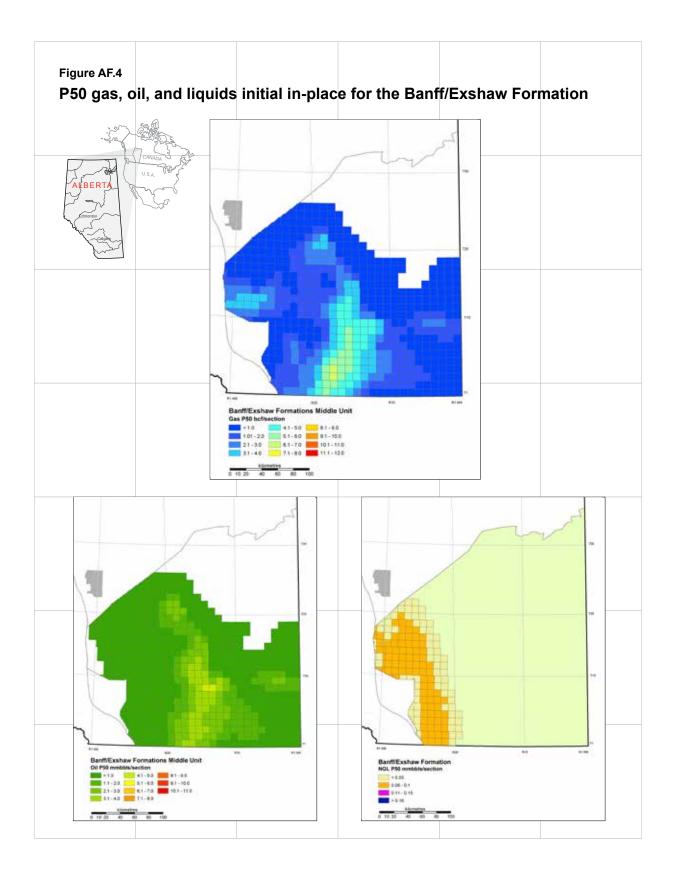

Although crude bitumen within both Grand Rapids deposits is pervasive through much of the Cold Lake Oil Sands Area, the developable resource (primary bitumen for the most part) is generally associated with Paleozoic highs. **Figures AE.12** and **AE.13** are maps of the cumulative net pay isopachs for the Upper Grand Rapids

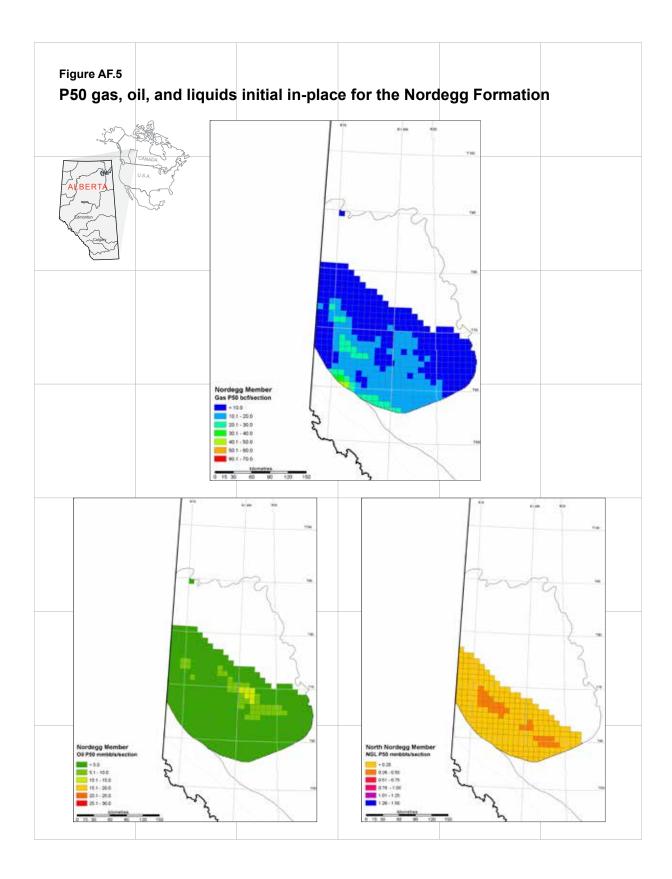

deposit and the Lower Grand Rapids deposit respectively. The net pay interpretations and volumetric calculations were completed for each zone and were then summed for the relevant deposit. The Colony, Waseca, and McLaren are included in the Upper Grand Rapids, and the Sparky, GP, Rex, and Lloydminster are included in the Lower Grand Rapids.






Appendix F Summary of Alberta's Shale- and Siltstone-Hosted Hydrocarbon Resource Potential


In 2012, the Energy Resources Appraisal Group of the ERCB completed a study entitled *Summary of Alberta's Shale- and Siltstone-Hosted Hydrocarbon Resource Potential* (ERCB/AGS Open File Report 2012-06).¹ The results of that study have been incorporated into this report, and the figures showing the medium (P_{50}) in-place resource values of natural gas, natural gas liquids, and crude oil for each of the six formations detailed in that study are shown in the six figures in this appendix.


¹ The study is available at the ERCB/Alberta Geological Survey's website at http://www.ags.gov.ab.ca/publications/abstracts/OFR_2012_06.html.

