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Condensation induced water hammer and steam assisted gravity
drainage in the Athabasca oil sands
M. R. Carlson
Kerntechnik 77 (2012) No. 2, page 000, 19 Figures


Most people will have been exposed to some aspect of the debate
about the Athabasca Oil Sands in North-Eastern Alberta and the
significant role that the oil sands are expected to play in supplying
conventional fossil fuels. Part of the bitumen is recovered from
mines and part is recovered from in situ projects utilizing the Steam
Assisted Gravity Drainage Process (SAGD). SAGD utilizes a con-
siderable amount of steam, that is injected into geological forma-
tions. Hot water, bitumen and some vapour are recovered from the
production wells. With significant steam generation, transmission
and injection, there is the very real possibility of condensation in-
duced water hammers. There have been a number of catastrophic
failures to date. The intent of the paper is to provide interesting
background information on the in situ oil sands industry. More im-
portantly, to show some interesting and broader applications of
thermalhydraulics developed in the nuclear industry. The expertise
developed may have potential markets, with some adaptation, to
the oil sands industry. Finally, there has been some discussion about
using nuclear power for steam generation in the oil sands.


Kondensationsinduzierte Wasserschläge und Dampfunterstützte
Schwerkraft-Drainage in den Athabasca Öl-Sanden
M. R. Carlson
Kerntechnik 77 (2012) Nr. 2, Seite 000, 19 Abbildungen


Die meisten Menschen werden bis zu einem gewissen Grad von der
Debatte um die Athabasca Ölsande im Nordosten von Alberta (Ka-
nada) berührt, denen eine bedeutsame Rolle in der Versorgung mit
konventionellen, fossilen Brennstoff zugeschrieben wird. Ein Teil
der Bitume wird durch Tageabbau gewonnen, ein anderer Teil
durch in-situ-Projekte unter Anwendung der „Steam Assisted
Gravity Drainage (SAGD)“-Technik. SAGD nutzt eine beträcht-
liche Menge an Dampf die in geologischen Formationen injiziert
wird. Heißes Wasser, Bitume und etwas Dampf wird aus Förderboh-
rungen zurückgewonnen. Durch die erhebliche Dampferzeugung,
dessen Verteilung und Einspeisung, besteht die sehr reale Möglich-
keit von Kondensationsinduzierten Wasserschlägen. Bis heute gab
es eine Anzahl von schweren Unfällen.


Die Absicht dieses Beitrags ist es, interessante Hintergrun-
dinformationen über die in-situ-Ölsandindustrie vorzustellen.
Noch wichtiger ist es zu zeigen, dass Entwicklungen im Be-
reich der Thermohydraulik, auch außerhalb der Kerntechnik
interessante und breite Anwendungsgebiete haben. Das ent-
wickelte Know-how bietet mit einigen Anpassungen an die
Ölsand-Industrie potenzielle Märkte. Abschließend ist anzu-
merken, dass es einige Diskussionen über die Nutzung der
Kernenergie zur Dampferzeugung für die Ölsand-Gewinnung
gibt.
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M. R. Carlson


Condensation induced water hammer
and steam assisted gravity drainage
in the Athabasca oil sands


Most people will have been exposed to some aspect of the de-
bate about the Athabasca Oil Sands in North-Eastern Alberta
and the significant role that the oil sands are expected to play
in supplying conventional fossil fuels. Part of the bitumen is re-
covered from mines and part is recovered from in situ projects
utilizing the Steam Assisted Gravity Drainage Process
(SAGD). SAGD utilizes a considerable amount of steam, that
is injected into geological formations. Hot water, bitumen and
some vapour are recovered from the production wells. With
significant steam generation, transmission and injection, there
is the very real possibility of condensation induced water ham-
mers. There have been a number of catastrophic failures to
date. The intent of the paper is to provide interesting back-
ground information on the in situ oil sands industry. More im-
portantly, to show some interesting and broader applications of
thermalhydraulics developed in the nuclear industry. The ex-
pertise developed may have potential markets, with some adap-
tation, to the oil sands industry. Finally, there has been some
discussion about using nuclear power for steam generation in
the oil sands.


Kondensationsinduzierte Wasserschläge und Dampfunter-
stützte Schwerkraft-Drainage in den Athabasca Öl-Sanden.
Die meisten Menschen werden bis zu einem gewissen Grad
von der Debatte um die Athabasca Ölsande im Nordosten
von Alberta (Kanada) berührt, denen eine bedeutsame Rolle
in der Versorgung mit konventionellen, fossilen Brennstoff zu-
geschrieben wird. Ein Teil der Bitume wird durch Tageabbau
gewonnen, ein anderer Teil durch in-situ-Projekte unter An-
wendung der „Steam Assisted Gravity Drainage (SAGD)“-
Technik. SAGD nutzt eine beträchtliche Menge an Dampf die
in geologischen Formationen injiziert wird. Heißes Wasser, Bi-
tume und etwas Dampf wird aus Förderbohrungen zurückge-
wonnen. Durch die erhebliche Dampferzeugung, dessen Vertei-
lung und Einspeisung, besteht die sehr reale Möglichkeit von
Kondensationsinduzierten Wasserschlägen. Bis heute gab es
eine Anzahl von schweren Unfällen.


Die Absicht dieses Beitrags ist es, interessante Hintergrun-
dinformationen über die in-situ-Ölsandindustrie vorzustellen.
Noch wichtiger ist es zu zeigen, dass Entwicklungen im Be-
reich der Thermohydraulik, auch außerhalb der Kerntechnik
interessante und breite Anwendungsgebiete haben. Das ent-
wickelte Know-how bietet mit einigen Anpassungen an die Öl-
sand-Industrie potenzielle Märkte. Abschließend ist anzumer-
ken, dass es einige Diskussionen über die Nutzung der
Kernenergie zur Dampferzeugung für die Ölsand-Gewinnung
gibt.


1 Introduction


The majority of the oil sands are relatively shallow. About
20 percent of the oil sands have overburden that is sufficiently
thin that it can be surface mined (the economic limit has his-
torically been considered to be 45 m). The majority of the oil
sands, 80 percent, are too deep to be mined. Thus, the major-
ity of the oils sand will have to be developed with in situ tech-
niques, which at present means Steam Assisted Gravity Drai-
nage (SAGD).


1.1 Basics of Steam Assisted Gravity Drainage (SAGD)


Higher density oils have been produced for some time utiliz-
ing steam as a driving agent. Traditional steam flood techni-
ques have not proved to be effective in the very high viscosity
bitumen found in the Athabasca tar sand. In north-eastern
Alberta the bitumen is located between the sand grains and
is mixed with water, which adheres to the sides of the grains
of sand. The tar sands are particularly viscous – with typical
initial in situ viscosities of approximately 1 million cp. In sim-
plified terms, the bitumen is so viscous that it cannot move
forward as the steam is injected. Fig. 1 shows typical data.


The original SAGD concept was conceived by Dr. Roger
Butler and is a relatively recent development. There are three
major steps – a circulation stage prior to starting SAGD, the
actual production of oil (SAGD) and then a wind-down or
abandonment phase. We start with two wells that are drilled
down typically on a slant, followed by a long horizontal sec-
tion of between 700 and 1500 m.


Hot steam is circulated down both wells through steel tub-
ing with the cold water returning up a second string of steel
tubing. As the formation is heated, the temperature of the bi-
tumen away from the well increases as heat is conducted away
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Fig. 1. Typical Athabasca bitumen properties
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from the wellbore. The original temperature of the oil sands
ranges typically from about 5 to 10 8C. Note that the angled
section of the well is constructed of intact pipe, while the low-
er horizontal section is constructed with a separate piece of
pipe (called a liner) that has thin slots cut in the pipe. When
the bitumen has become hot enough between the two wells
that communication is well established, the next stage may
begin. The thin slots allow fluid to move through the liner,
but are thin enough to block the movement of sand.


In the next stage steam is injected under pressure into the
upper well, which, by virtue of it’s low density rises. The oil
segregates by gravity and is captured using the lower well.
The well setup is shown in Fig. 3, and the resultant process is
shown in a lab experiment in Fig. 4.


The steam chamber from a 3D perspective looks some-
thing like Fig. 5. This depiction is extremely simplified in that
the reservoir is shown as being homogeneous sands. The rea-
lity is that there are a large number of interbedded low per-


meability shales that do not transmit
fluids and the actual steam chamber
would look in cross-section something
more accurately in Fig. 6.


The sand deposits cover quite large
areas and a single well pair is not cap-
able of draining an entire reservoir. De-
velopment consists of a series of steam
chambers side by side. Wells are
grouped by surface facilities into pads
that contain anywhere from 3 well pairs
up to about 10 well pairs. The pads are
oriented to conform to the bitumen de-
posits. See Fig. 7 and Fig. 8.


The final stage is called the wind
down stage. To date there are few steam
chambers that have been abandoned
and this stage is just being reached by
the first commercial projects. When
steam injection ceases, the chambers
will cool down and the steam inside the
chamber will condense and contract.
Since the chamber is comprised of sand
with the interstitial bitumen removed,
it will not physically collapse on aban-
donment. However, the original process
envisaged using natural gas to fill the
chamber at operating pressure, since it
would prevent unwanted steam losses
from adjacent chambers.


The development of SAGD was ori-
ginally implemented through the Alber-
ta Oil Sands Research Technology As-
sociation, which was sponsored by the
Province of Alberta. The UTF (Under-
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Fig. 2. Arrangement of SAGD wells and circulation of fluids [1] Fig. 3 (left). Arrangement of SAGD wells during production phase [1]


Fig. 4(right). Cross Section of SAGD chamber development in a lab experiment [2]







ground Test Facility) project was quite unusual in that a mine
was dug and the horizontal wells were drilled out of mine tun-
nels. The project was a significant success. Subsequent phases
utilized wells drilled from surface. Subsequent to the UTF
there have been a series of commercial projects implemented.
The efficiency of the SAGD process is customarily described
by the amount of steam that must be injected to recover a
barrel of oil. Generally speaking an SOR of 4 or less is re-
quired to remain economic. Not all projects have achieved
this performance, although the majority have.


2 Operating a SAGD project


From the proceeding, on may intuit that the manner in which
the wells are operated can have a significant impact on perfor-


mance. Starting with the circulation phase there is more than
one way to circulate the wells. For instance, the steam can be
circulated down the long string, with the steam exiting at the
end of the well and being extracted up the short string, or pos-
sible with the fluid being recovered up both the short string
plus up the annulus (i. e. from the casing directly). Alterna-
tively the fluid flow can be reversed – with the steam going
down the short tubing and the condensed water recovered
up the long tubing. Of course there will be heat loss from
around the casing on the way down and this heat is lost – it
does no useful work. The annulus can also be filled with nat-
ural gas – which acts as an insulator. There is also heat trans-
fer between the hot fluids going down the long string, with
cooler fluids travelling past the hot tubing on their way back
to surface. There are cost limitations on the tubulars and as a
result there are real pressure drops along the well.


Although the cold bitumen does block most of the intersti-
tial pore space in the oil sands, there is a film of water on the
rock that does provide for some inherent water permeability.
The sands in the Athabasca are not consolidated and this
means that the sand grains can be re-arranged if the fluid
pressures and applied loads change. There is therefore some
fluid leak-off during the circulation stage. Although this fluid
leak-off would appear to be a disadvantage, the conduction
of heat through soils is quite slow. The transfer of heat by con-
vection is faster and this leak-off actually helps heat up the
formation more rapidly.


Ideally it would be possible to accurately calculate the ex-
act amount of start-up or circulation time that is required.
However, experience has indicated that this is not always pos-
sible since the exact geology and physical properties are never
known with certainty. By operating the injector at a slightly
higher pressure and monitoring the circulation returns in the
producer, it should be possible to see if any oil is being pro-
duced – which would indicate that communication has been
achieved between the two wells and the SAGD stage can be-
gin.


After the circulation phase – in the SAGD phase, the pro-
ducing wells are put on pump and the injection well injects
steam into the formation. The two wells therefore operate dif-
ferently. The steam inside the steam chamber rises up the
middle, hitting the top of the formation and then spreading
out towards the side of the formation. Ideally, the steam con-
denses as it hits the cold bitumen against the side of the cham-
ber and releases its heat by condensing – melting the bitumen.
There is therefore an inherent convection or circulation pat-
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Fig. 5. Three dimensional depiction of a SAGD chamber


Fig. 6. Effects of geological heterogeneities on SAGD chamber develop-
ment [3]


Fig. 7. Arrangement of a pad with geological deposit [5]. Note small
scale pilot.


Fig. 8. View down a producing pad, wells are produced with pumps
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tern within a steam chamber. This means the right amount of
fluid must be drawn out of the producing well.


With the steam rising up to the top of the reservoir there
will be a certain amount of heat that is lost to the overburden.
In a typical SAGD application a bit under 15 percent of the
heat is typically lost – assuming the cap rock has no inherent
permeability. In practical terms this last assumption is not al-
ways true.


As can be seen in Fig. 9, the interface between the steam
and liquid water can vary within the steam chamber. If the
water is too deep, the steam partially condenses on its way
up to the top of the chamber. If the water interface is drawn
down into the producer, steam may potentially short circuit
from the injector directly into the producer – in which case
no useful work is done. Ideally the interface between the
steam and water would be located just above the producer,
with maximum production occurring. The scale of the intersti-
tial spaces within the reservoir sand is quite small. Sufficiently
small that interfacial tension effects (capillary pressure) be-
tween the oil, water, hydrocarbon gases, steam, sand and fines
become quite significant. Because of this sharp interfaces
don’t actually exist.


There are two ways of attempting to control this process.
One is to use the temperature and pressure in the wellbore
and compare this to a steam saturation curve. If the well can
be operated below the saturation pressure, then no steam


should be entering the well. Normally it is easier to measure
temperature rather than pressure and the standard that has
evolved is to express how far under the saturation pressure
the fluids in the wellbore are in terms of temperature rather
than pressure – the amount of “subcool”. Another alternative
is to accept that complete optimization cannot be achieved
and to use a small amount of steam production as an indicator
of near optimal performance. In practice, since there are pres-
sure drops along the well and there is considerable flashing of
the wellbore fluids as hydrostatic pressure is released on the
way to surface – making an accurate estimate at the formation
difficult. Neither method is therefore easy to implement in
practice.


In practice, the wells suffer some fines movement, scale
and asphaltene deposition and there is a lower permeability
zone around the wells that is normally referred to as a skin ef-
fect. This involves some pressure drop from the formation
into the well. It also follows that a steady flow of fluids into
the well would be optimal and this implies somewhat steady
conditions in the production and injection wells. This later
point is of great interest to those involved in thermalhydrau-
lics.


3 Cap rock integrity and hydraulic fracturing


The steam chambers are operated at pressure. A SAGD pro-
ject therefore requires enough dirt on top of it that the over-
burden doesn’t get lifted off. Further, there must be sufficient
strength that the overburden doesn’t shear around the edges.
In essence, a steam chamber will act as a distributed load un-
der a plate. There must also be sufficiently low permeability
that the steam doesn’t simply flow up through the overbur-
den. Steam will flow through sand quite well and this means
the caprock has to be of low permeability i. e. the formation
must have a high clay content.


There is another failure mode that is perhaps not quite as
obvious; which is hydraulic fracturing. Hydraulic fracturing is
most easily explained as a tensile failure around a borehole.
I use the analogy of a concrete block to explain this, as shown
in Fig. 10:


If we pump high pressure fluid into the hole in the middle
of the concrete block, then eventually the outside of the bore
hole is going to go into tension. Concrete has very little ten-
sile strength (and soils even less) so this causes the borehole
to crack along the side. I have shown a stress being applied
to the concrete block. The block, if homogeneous, will crack
preferentially along the b-b’ line, since less stress has to be
overcome than along the a-a’ line. I have also shown a small
map of Alberta and there are indeed significant natural stress
variations in the earth, as evidenced by the Rocky Mountains.
In general most rocks within a producing zone have some per-
meability and some allowance must be made for the fluid leak


off, and the associated pressure distribu-
tion around the well.


Once the fracture has started the
fracture is propagated by a completely
different mechanism: stress concentra-
tion at the tip of the fracture. The frac-
ture propagates as the material fails at
the tip of the fracture. The direction in
which the fracture propagates changes
with the stress state and can change di-
rection – if the stress conditions change.
I have two quite nice pictures. The first
is a clear plastic block that has been
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Fig. 9. Steam – water interface variation as a function of operating con-
ditions


a) b)


Fig. 10. Fundamental mechanism – hydraulic fracture initiation and propagation







fracced in the lab in Fig. 11. In this case the fracture has
started horizontally. The second example is a series of large
scale geological features resulting from a series of natural
geological intrusion events in Fig. 12. Note how the fractures
change abruptly from vertical and then adopt a saucer or cup
shape as they get close to surface.


The system has the general appearance of a “bunch of
flowers”. In simplified terms, if you put too much pressure in-
side an uncased or perforated wellbore, the formation will
crack. It will then follow a complex path, as depicted above
to surface.


Hydraulic fracturing is commonly used in the oil and gas
industry using a very thick fluid to minimize fluid losses and
to act as a sand carrying agent. Using timed breakers it is pos-
sible to create a large crack, fill it with sand, and then recover
the (now broken) treatment fluids. The sand provides a con-
ductive path which greatly enhances the productivity of oil
and gas wells. This process is known colloquially as “fraccing
a well”. Most fracs result in vertically oriented fractures due
to well depth.


Loss of drilling fluids due to hydraulic fracturing can occur
if high pressure fluids are encountered in the lower section of
the well. It is common to do a small fracture called an FIT
(Formation Integrity Test). Small experimental hydraulic frac-
tures can also be used to interpret the minimum stress state of
formations, a process known as “mini-fraccing” or “micro-
fraccing”. These and hydraulic fracturing well treatments
(fracs) can all be used to measure or estimate the pressure at
which a hydraulic fracture will be created.


4 Potential for condensation induced water hammer (CIWH)


The U.S. nuclear regulatory agency published NUREG/CR-
6519 [7] Screening Reactor Steam/Water Piping Systems for
Water Hammer, which was prepared by P. Griffith. The mono-
graph provides a succinct guideline of conditions required:


1. The pipe must almost be horizontal.
2. The subcooling must be greater than


20 8C.
3. The L/D must be greater than 24.
4. The velocity must be low enough that


the pipe does not run full, i. e., the
Froude number must be less than one.


5. There should be void nearby.
6. The pressure must be high enough


that significant damage occurs, that
is the pressure should be above 10 at-
mospheres.


Reviewing the above list we find:


1. The “horizontal wells” are steered through the formation
and are not completely flat. It would be more accurate to
say they have undulations. However, this criterion is sub-
stantially true.


2. On startup the natural formation temperature is between 5
and 10 8C and the required temperature differential ob-
viously exists. If there is a change of operating conditions
– such as an injector shut-in (which does happen) the
steam chamber is clearly going to cool over time. What is
perhaps less obvious is that to work on the well fluid must
be introduced in the wellbore to prevent the reservoir
fluids from escaping. While it is possible to heat workover
fluids to about 90 8C, this is more than 20 8C colder than
the steam normally injected. More generally it is known
from downhole temperature monitors [2] that wellbore
temperatures do vary by more than 20 8C as shown in
Fig. 13.


3. Most liners are about 177.8 mm in diameter and 1000 m
long so the L/D is definitely met.


4. Initially the casing and tubulars are completely liquid
filled. The Froude number requirement is therefore met.
As time progresses this is not obvious. Modelling will be
used in the following.


5. There is a void in the riser (diagonal) section of the hori-
zontal well.


6. Most SAGD projects run in excess of 1000 kPa (10 bars)
and thus the suggested pressure requirement is met.
Although pipe burst strength is a criterion for surface pip-
ing, the horizontal section is slotted and for injectors and
producers the maximum pressure limitation is the hydrau-
lic fracturing pressure of the formation.
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Fig. 11. Hydraulic fracture induced in a clear plastic sample side and top view [5]


Fig. 12. Cross-section through a series of dykes and sill in South Africa
[6] Fig. 13. Temperature data from a SAGD operating wellpair [1]
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Those familiar with thermal hydraulics will quickly recog-
nize that steam/water piping is frequently quite transient. This
was recognized during the UTF [8] project as shown in
Fig. 14.


The fluid flow results in slugs of flow from the horizontal
section to surface, a process that has been dubbed “geyser-
ing”. Subsequently it has been called “Perco-Lift”. The UTF
project was unusual in that the fluids were drained from the
well into a mine tunnel and then pumped to surface using a
centrifugal pump. Note the variations in well head rates which
results in slugs in the surface facilities and the variation in
bottomhole temperature and pressure. Fluids are brought to
surface for operating SAGD well pairs using a variety of tech-
nologies, which include: gas lift, electric submersible multi-
stage centrifugal pumps and progressive cavity pumps driven
by a rotating steel rod to surface.


5 Modelling of an injection well using WAHA


Some preliminary modelling has been carried out using
WAHA [9, 11] for an injection well utilizing an injection rate
of 80 tonnes of steam a day with a 25 8C temperature differen-
tial. The results are shown in Fig. 15. The wellbore has been
simplified, only the horizontal section has been modelled.
The liner has been simplified in that all of the fluid exits at
the end of the well, where in reality there would be a distribu-
ted leakoff into the formation. The pressures are shown 75 m
from the heel of the well. The input to the model (such as
heat transfer coefficients) was not tuned and only the first
minute is shown. It strongly suggests that condensation in-
duced water hammers should occur. The blue line represents
the pressure. The well trajectory has been changed for the
purple trace, with the objective of preventing CIWH. The
red line represents the maximum pressure in the well. Above
this pressure the formation will hydraulically fracture.


It is also possible to build some fairly simple micro-models
using some vinyl tubing and a wall paper steamer. All of
which can be purchased at a local building store for a nominal
cost. With a bit of epoxy putty, the tubular arrangements
found in SAGD wells can be cheaply constructed. This de-
monstrates that the geometry definitely exists for water ham-
mer. The latter experiments are, of course, at a very low pres-
sure, approximately 4 kPag. The author believes that CIWH is
not intuitively obvious and this visualization is critical.


Observed data does exist, which has an appearance similar
to that shown in Fig. 17. This data is problematical. The pres-
sure sensors utilized were not sized to go to the pressure spike
levels that can be predicted using the methodology from
NUREG/CR-6519 of 17 000 kPa. These gauges were also not
designed to pick up short transients that last approximately
0.1 s, as suggested by the un-tuned WAHA model. In fact,
downhole gauge reliability is a serious problem due to the
high temperatures. It is quite likely that there is considerable
physical vibration and shock from movement due to liquid
slugging and tubular movement resulting from pressure
spikes. The data is not a continuous output as the graph might
suggest. The readings are spaced apart by about 4 to 5 min
and are recorded digitally at a fixed sampling time. The
WAHA model suggests that our recorded pressure has an ele-
ment of chance associated with it – sometimes the gauge
reads a spike, sometimes a void (which reads near zero pres-
sure) and sometimes the approximate injection pressure. Be-
cause the riser section is typically gas (steam) filled, there is
a large gas cushion effect and the downhole pressures do not
manifest at surface. For instance, in the demonstration model
shown in Fig. 16, the wallpaper steamer operates continuously
despite the downhole water hammers.


While conclusive proof is hard to draw from such data, the
results obtained are not consistent with
expectations.


The data indicates pressure spikes
more than sufficient to induce a hydrau-
lic fracture. These events would logi-
cally involve relatively small volumes
of fluid since the spikes are so short.
On the other hand, it is clear that the
process is repetitive. The expected oper-
ating pressure is also a factor. The hy-
draulic fractures will heal with a return
of cold fluids into the wellbore. This will
tend to perpetuate the process. If the
operating pressure is close to fracture
pressure, the fracs will not heal and will
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Fig. 14. Calculations of wellhead rate and bottomhole pressures for dif-
ferent conditions.


Fig. 15. WAHA simulation of injection well – for first 60 seconds







steadily progress – a frac by a “thousand cuts”. Failure would
therefore not be instantaneous. The Joslyn blowout lasted
about 5 min. Accounting for steam expansion indicates the
amount of condensate was not that large, about what would
be expected from a fracture.


6 Significant failures – Joslyn and Christina lake


There are no pictures in the public domain for the MEG En-
ergy surface line failure [12]. The Energy Resource Conserva-
tion Board (ERCB), the agency responsible for regulating the
oil and gas industry has produced a report IR 20080902 that
documents their investigation. The following has been para-
phrased from the report


“At about 5:33 a. m. on Tuesday, May 5, 2007, MEG Energy
Corp. (MEG) became aware of a potential release situation at
its Christina Lake Regional Project when the control room op-
erator noted an “electrical blip and a muffled pop sound.”
Communication was lost between the Digital Control System
(DCS) and Pad A (location of six horizontal well pairs) and a
large plume of steam was observed rising in the direction of
Pad A. ... MEG staff responded in the direction of the steam
plume to confirm the location of the release but were stopped
about half way to Pad A by sections of the aboveground 24-
inch (610 millimetres [mm]) steam pipeline and downed power
lines lying across the road.”


The project was shut-in as a result of this failure. The
steam line has now been repaired. Fortunately there was no
one near the facility when it failed and there were no injuries.
The Province of Alberta also issued a report “ERCB Staff
Report Joslyn Steam Release 2010-02” [13]. The following
has been extracted from the report:


“The steam release occurred near the heel of the first well
pair in pad 204 (well pair 204-I1P1), and caused a surface dis-
turbance about 125 metres (m) by 75 m, with rock projectiles
travelling up to 300 m horizontally from the main crater and a
plume of dust about 1 kilometre long stretching to the south-
west of the release point. There was no loss of life or injury,
and there were no harmful gaseous emissions.”


The wellpair that failed and three adjoining well pairs were
lost. Since this time the project has been abandoned. Two pic-
tures have been extracted from the report as shown in Fig. 18.
The ERCB report was based on a significantly more detailed
report prepared by Total [14].


The report prepared by the operator and reviewed by the
ERCB concluded that caprock failed in shear as the result of
upward migration of pressure. This result is not consistent
with combined reservoir simulation/geomechanical models
prepared by the author. Condensation induced water hammer
was not considered at the time as a possible failure mecha-
nism. The pressure required to hydraulically fracture the oil
sands is considerably below the pressure required to burst line
pipe (no slots) as demonstrated by the Christina Lake steam
distribution line failure. Note that the Joslyn failure occurred
immediately after the circulation phase, in which cold fluids
were introduced into the producing wellbore to install a
pump. The injector was shut-in while this work was done.
There will be a complex interaction between a production
well liner and the formation containing the bitumen.


It is interesting to compare the morphology of the dykes in
Fig. 13 with the morphology derived from seismic shown in
Fig. 19.
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Fig. 16. Visual display of water hammer in a SAGD injector


Fig. 17. Cartoon of well pressure data. Red data is from heel, blue data is
from toe


Fig. 18. The crater from the Joslyn steam release [13]


Fig. 19 Geophysical interpretation made by Total of Jolsyn steam release
[14]
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7 Conclusion


The material above has been somewhat simplified. The petro-
leum industry has not commonly encountered condensation
induced water hammer. Steam floods have been implemented
in many places, however, the wells were traditionally vertical
and this does not lend itself to the conditions for CIWH in
the subsurface. Clearly the potential has existed in surface fa-
cilities for some time. This has been dealt with empirically
using steam traps. The development of horizontal well tech-
nology during the late 1980's has changed this situation and
the use of SAGD has introduced steam and horizontal wells
together.


Complete understanding of CIWH is relatively recent, it
did not occur until the early 1980’s as a result of a series of
events in the nuclear power industry and the research done
at MIT by Bjorge [13]. This work was also subsequent to the
geysering models that were created as part of the UTF pro-
ject. The nuclear industry has responded with a series of
guidelines and monographs, as well as the development of
some sophisticated software such as RELAP, CATHARE
and WAHA [9– 11].


The Joslyn failure is troubling in that it could easily be ini-
tiated by condensation induced water hammer. There have
also been some serious surface facility failures as a result of
CIWH, with very damaging results. U.S. regulatory experi-
ence from the web indicates that CIWH remains one of the
most significant safety issues for the nuclear industry [16 – 18].


Part of the intent of this paper is to provide some interest-
ing information to those in a related energy industry. How-
ever, the author is also hoping that the expertise that has
reached a high level of development within the nuclear indus-
try can be adapted to the requirements of the in situ oil sands
industry. Hopefully I piqued some interest [19] to some of
those researching and developing software for thermalhy-
draulics.


(Received on 1 December 2011)
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Abstract 
 
A significant caprock failure occurred on the Joslyn SAGD property in 2006, which has had a wide impact on the approval 
process for future SAGD projects. Two reports were released by the Alberta Government: "Total E&P Canada Ltd., Surface 
Steam Release of May 18, 2006, Joslyn Creek SAGD Thermal Operation, ERCB Staff Review and Analysis, February 11th, 
2010" and "Summary of Investigations into the Joslyn May 18th, 2006 Steam Release, Total E&P Canada Ltd.".  The latter 
report is very large. A number of potential mechanisms are postulated without definitive resolution. The most likely failure 
suggested involved transmission of fluids up a 50,000 mD chimney and a pancake shaped lens of high pressure steam that 
resulted in a shear failure of the caprock. 
 
The author believes that this scenario is unlikely from a geological and heat transfer perspective. There are other anomalies. 
Peak stresses in most caprock coupled reservoir-geomechanical simulations normally peak between 3 to 7 years after start-up. 
However, the Joslyn failure occurred immediately after conversion from partial SAGD to full SAGD, in which the producing 
well was killed and a PCP pump was run. 
 
There are other issues that should be considered that include: 
 


1. How hydraulic fractures are initiated and propagated. The literature shows us: 
a. computer design programs that predict fracture propagation and shape, 
b. analytical solutions that also show expected fracture morphology; and, 
c. physical examples which have been dug up or cored 


2. In addition the geological record provides excellent analogue information on the morphology of high pressure 
intrusions. These various types of data will be compared to the observed morphology derived from the 3D seismic. 


 
Earlier work by Edmunds and Good has shown that extremely transient conditions exist in SAGD wells that result in 
“geysering” or slugging within the producing well. The energy available from water and steam is enormous. The nuclear and 
power industry previously made these similar discoveries after a series of catastrophic failures of piping systems. Analytical 
and computer simulation tools from the nuclear industry will be used to show that extremely high pressure transients, many 
times over fracture initiation pressures, can be expected. This is the same mechanism that resulted in the catastrophic failure 
of MEG Energy’s Christina Lake main steam distribution line. 
 
In summary, there is every reason to believe that when hot steam was injected into a cooled (water) condensate filled well; 
very large pressure transients can be expected from phase changes within the piping that should result in a frac to surface. 
 
Introduction 
 
Remarkably little has been written about the Joslyn failure. At present, there are no technical papers on the failure. Papers 
that deal with related topics include: 


1. Some oblique reference to the matter in “Effective Caprock Determination for SAGD Projects” by Collins, Walters, 
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Perkins, Kuhach and Veith1. The substantive subject matter is steam rises that could be expected. The authors are 
attempting to infer steam rise for the Tamarack project proposed by Ivanhoe Energy. 


2. There is indirect discussion in “Geomechanical Simulation of Caprock Performance for a Proposed, Low Pressure, 
Steam Assisted Gravity Drainage Project”, by Uweira-Gartner, Carlson, Walters and Palmgren2,3. This project is at a 
similar depth, and the modelling result will naturally draw comparison with the Joslyn project. The main topic the 
development of Alberta Oil Sands Clearwater West commerical pilot. 


3. A presentation was made at the 2011 CSPG / CSEG / CWLS convention “Joslyn Creek SAGD: Geologic Factors 
Related to a Surface Steam Release Incident, Athabasca Oil Sands Area”, by Hein, and Fairgrieve4. The geological 
conferences do not have formal proceedings and papers. The presentation has been available on line as a pdf 
download of a Powerpoint presentation. The material in this paper is very helpful. 


4. There is information on caprock integrity in the WHOC-609, “Caprock Integrity Analysis in Thermal Operations: 
An integrated Geomechanics Approach” by Khan, Han, Vishteh and Khosravi5. This paper is after the Joslyn failure, 
however, there is no discussion of Joslyn in the paper.  


In summary, there are no peer reviewed papers from an engineering perspective specifically addressing the caprock failure at 
Joslyn that the author is aware of. 
 
Public Domain Reports 
 
Two reports are available from the Alberta Government: "Total E&P Canada Ltd., Surface Steam Release of May 18, 2006, 
Joslyn Creek SAGD Thermal Operation, ERCB Staff Review and Analysis, February 11th, 2010"6 and "Summary of 
Investigations into the Joslyn May 18th, 2006 Steam Release, Total E&P Canada Ltd."7. The latter report is very large at over 
1,000 pages. The latter part of the Total report is a large section of backup enviromental data. None-the-less the report is of a 
substantial size. As may be deduced from the above, these reports have not been summarized for inclusion in the technical 
literature. For those involved in the design and implementation of SAGD projects, these reports should be studied in detail.  
 
Key Conclusions 
 
The two reports provide different interpretations of the causes of failure. Excerpts from these reports are provided as follows 
(paraphrased from the ERCB report). Total’s views were: 
 


1. A fast, gravity-driven local developoment of a steam chamber or "chimney" to the top of the SAGD pay zone, 
probably involving sand dilation. This occurred over a 4-month period while well pair 204-I1P1 was on steam 
circulation. (Total used high density three-dimensional [3-D] seismic, analystical work, dilation theory, and simple 
reservoir simulation to support this.) 


2. A lateral extension of the presssurized area below the first major shale barrier in the Upper McMurray. (Total used 
3-D seismic, geology, and simple geomechanical modelling to support this.) 


3. One or more shear failures on the edge of this pressurized areas that allowed the steam to breach within a gas zone 
in the Upper McMurray and/or Wabiskaw C sand or in the Wabiskaw A water sand under the Clearwater caprock. 
(Total used simple geomechanical modelling and historical pressures and steam rates to support this.) 


4. Significant water and steam storage in the localized SAGD chamber, fracture system and Wabiskaw and Upper 
McMurray porous and permeable sands. (Total used historical steam rates and presssures, geology, simple 
geomechanical modelling, and the explosive nature of the steam release to support this.) 


5. A catastrophic shear failure of the Clearwater caprock, leading to release of steam at surface on May 18, 2006. 
(Total used simple geomechanical modelling to support this.) 


 
Total (2007) also investigated other possible failure mechanisms: 
 


1. steam moved up nearby vertical wellbores with poor cement bonds. 
2. steam moved up through natural fractures within the reservoir and caprock, and 
3. high pressure steam injection induced vertical fracturing of the reservoir and caprock. 


 
Total concluded that none of these alternative scenarios was likely and provided arguments against each one. 


 
The ERCB (2010) agreed with some, but not all of, Total’s (2007) interpretations. The following was reported by the ERCB: 
 


Staff reviewed Total’s most likely steam relaease scenario and the three alternative scenarios, as summarized below: 
Total’s Most Likely Scenario 


 
1. Staff agrees that the mini-frac test result indicates that only horizontal fracturing of the reservoir and caprock 


would occur at Joslyn Creek. However, staff believes that the test results may not be representative. 
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eventually be expected to branch. This has been confirmed in situ within the Athabasca oilsands10. 
 
This type of fracture morphology is observed in the 3D seismic depictions. The central area appears to be with deformed by 
the fractures or dilated. The significant dilation in Figure-4 has taken place and this suggests some additional mechanism.  
The dilation chimney looks like what is known as a pipe in soil mechanics and represents a special stress condition.  
 
 Effective Stress 
 
A key concept from soil and rock mechanics is effective stress.  The concept is shown in the diagram below in which soil 
(and rocks – which are viewed as cemented granular materials) that have pores spaces filled with water: 
 


 
Figure-6 Explanation of Effective Stress Concept 


 
From the above a force balance can be done on the dashed line X-X. In equation format, the total stress applied is equal to the 
fluid pressure plus the stress carried by the grain structure: 
 


	   
 


where ,    = applied stress 
’ = effective stress (grain structure stress) 


     u = pore pressure 
 
Or, reordering the equation, to solve for the stress carried by the grain structure (effective stress ’) 
 


	 		  
 
If the fluid pressure exceeds the applied load there will be no net grain to grain force and the sand particles can (and will) 
disaggregate. This is a zero effective stress. 
 
Whatever has caused this disturbance must be at a sufficiently high pressure to cause extreme disruption to the fabric of the 
rock and high enough to cause some leakoff into the existing strata. This suggests very high pressures, well above ISIP’s 
from a mini-frac test.  
 
Gas Pipes 
 
There are modern examples of such distrurbances that are on seismic and have also been observed in Pli-Pleistocene clay in 
Cap Vagia on the Greek island of Rhodes. A seismic representation from Nigeria is shown below11: 
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Figure-10 Void Collapse Model in SAGD Wellbore 


 
The explanation provided by AECL is as follows: 
 


Water hammer is defined as the change in pressure that occurs in a fluid system as a result of a change in 
the fluid velocity. This pressure change is a result of the conversion of kinetic energy into pressure, which 
creates compression waves, or the conversion of pressure into kinetic energy, which creates rarefaction 
waves. In general, decreases in pressure as a result of water hammer are not a concern in thick walled 
piping built to withstand high pressure, since these pipes can withstand any under-pressures caused by this 
phenomenon. On the other hand, water hammer induced compression waves represent a potential threat to 
piping and component integrity and thus represent an important safety concern. 
 
Water hammer can be classified into two different groups: single-phase water hammer and two-phase 
water hammer. In single-phase water hammer, the water is initially in the liquid state, and remains in the 
liquid state for the duration of the water hammer event. Two-phase water hammer can be classified into 
three different general categories: 
 
1. Two-component/two-phase water hammer, which involves both water and noncondensables,  
2. One-component/two-phase water hammer involving water and void created by column separation 


or cavitation, or in which the gas and liquid phases are at the same temperature, commonly 
known as void collapse water hammer, and  


3. One-component/two-phase water hammer in which there is significant heat and mass transfer 
between phases, commonly known as condensation-induced water hammer.  


 
In the first two categories the gas and liquid components are at the same or nearly the same temperature 
and the water hammer phenomena are driven primarily by momentum considerations.  In the third 
category, the water hammer phenomenon is driven by thermodynamic considerations in which high 
temperature steam is condensed by subcooled water.  The investigation of two-phase water hammer is of 
particular importance since it represents the potentially most destructive form of water hammer. 


 
Condensation induced water hammer has caused many explosions and is a significant cause of fatalities in the power and 
boiler industry. Steam lines must, by code, have ``steam traps`` to drain condensate from steam lines.  Steam traps and 
condensation induced water hammer must be considered in SAGD injector design. To date, horizontal wells have not had 
stream traps installed. 
 
The diagram shows that valve closure causes extreme pressure spikes that are over 3 times the operating pressure. For a 1,000 
kPa operating pressure in a SAGD wellbore, this means transients can be expected as high as 4,000 kPa. This is considerably 
over the fracture pressure of 1800 kPa. Over time, a fractured and dilated zone would propagate vertically. 
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from wells in the oil sands. This matches the shapes observed in Total’s geophysics. 
5. It is clear that dilation exists in the structure shown in Total’s review of the failure. This would be consistent with 


pressures in excess of overburden load and zero (or negative) effective stresses. 
6. Gas when it migrates in nature from deep in the earth creates pipe like structures with fractures. 
7. It is unlikely that operating the well just over the calculated frac pressure would result in a fracture to surface. 


Propagating a fracture requires overcoming leakoff, friction pressure as well as the energy to disturb the formation. 
8. Condensation water induced hammer has destroyed many surface pipelines and is a known source of very high 


pressures causing failures. The formation in a SAGD well is unprotected because the liners are slotted. 
9. Computer simulations of SAGD wells indicate pressure spikes are likely and should be included in SAGD well 


design. The failure mechanism postulated fits well with the observed failure morphology. 
10. Resolving the failure that occurred in Joslyn is critical for safely licensing future projects. Currently there are a 


number of shallow resources, including the Joslyn property, where significant reserves will be sterilized if safe 
operation cannot be reasonably assured. 


 
Condensation induced water hammer has caused many explosions and is a significant cause of fatalities in the power and 
boiler industry. Steam lines must, by code, have ``steam traps`` to drain condensate from steam lines. Such failures have 
already occurred on more than one occasion in the oil sands.  Steam traps and condensation induced water hammer must be 
considered in SAGD injector and producer design. While both Total and the ERCB have expended considerable effort and 
resources in evaluating the failure at Joslyn, the author believes other mechanisms should also be considered. 
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TECHNICAL ARTICLE


the caprock failure at joslyn
An analysis


By M.R. (Mike) Carlson, president, Applied Reservoir Enterprises Ltd.


a significant caprock failure occurred on 
the Joslyn steam assisted gravity drainage 


(SAGD) property in 2006 that continues to have 
a wide impact on the approval process for future 
SAGD projects. Two reports were released by 
the Alberta government: ERCB Staff Review and 
Analysis: Total E&P Canada Ltd. Surface Steam 
Release of May 18, 2006 Joslyn Creek SAGD 
Thermal Operation,  and Total E&P Canada Ltd.: 
Summary of investigations into the Joslyn May 
18th, 2006 steam release. The latter report is 
very large. A number of potential mechanisms 
are postulated without definitive resolution. The 
most likely failure suggested involved transmis-
sion of fluids up a 50,000-millidarcy chimney and 
a pancake-shaped lens of high-pressure steam 
that resulted in a shear failure of the caprock. The 
Energy resources Conservation Board (ErCB) 
also believes fracturing may have been involved.


Detailed studies using combined finite ele-
ment models and thermal reservoir simulators 
indicate some anomalies with the proposed 
mechanism. Peak stresses in caprock in 
simulations normally peak between three 
and seven years after start-up. However, 
the Joslyn failure occurred immediately after 
conversion from partial SAGD to full SAGD, 
in which the producing well was killed and a 
progressing cavity pump was run. This hap-
pened well before thermal expansion of the 
sands could have caused failure. The chim-
ney would have had high heat losses, so the 
steam would condense. Because bitumen-
saturated sands have low permeability 
(particularly when cold) and the shales above 
have very low permeability, it would also be 
necessary for the fluids in the chimney to find 
somewhere to flow to.


If, for instance, a pipeline fails, one would 
normally examine the morphology to determine 
the mechanism. We know a lot about horizontal 
fractures, and we have considerable geological 
knowledge as well as soil mechanics. The mor-
phology observed suggests very high pressures 
were involved—pressures above the values that 
were measured at multiple points. Analytical 
and computer simulation tools from the nuclear 
industry will be used to show that extremely 
high-pressure transients, many times over frac-
ture initiation pressures, can be expected. This 
mechanism, which is far from intuitive, resulted 
in the catastrophic failure of mEG Energy 
Corp.’s Christina Lake main steam distribution 
line in 2007.


In summary, if hot steam was injected into a 
well filled with cooled condensate (water), very 
large pressure transients could be expected  


Distance from wellbore [m]


Fracture path from 
low residual area


Fracture path from 
high residual 
compression region


De
pt


h 
[m


]


0
-1.8


-1.2


-0.6


0


1 2 3 4 5 6 7


[b] Single batches model


3


1


2


GVD


MS HS


MVS
GVS


GS


4
[a] Multi-batches model


[b] Single-batch model


FIgURE 3: BRANCHING OF DYKES AND SILLS IN SOUTH AFRICA3 FIgURE 4: FRACANAL FRACTURE SHAPES—HORIZONTAL FRAC4


FIgURE 1:  


JOSLYN SEISMIC 


3-D VIEW FROM 


UNDERNEATH2


FIgURE 2:  


JOSLYN SEISMIC 


CROSS-SECTION 


SHOWING PIPE2


 journal of the Canadian heavy oil association 13







from phase changes within the piping that could 
result in a frac and or soil pipe to surface. This 
means that a well workover could have been an 
event that triggered the Joslyn failure.


EXISTINg INFORMATION
At present, there are two technical papers on 
the Joslyn failure: one Society of Petroleum 
Engineers conference paper, and one peer-
reviewed paper in the CETI Journal. Papers that 
deal with related topics discuss caprock deter-
minations. At present, there are fi ve or six papers 
about caprock studies.


The two reports provided to and by the 
government have different interpretations of 
the causes of failure. Total’s views are para-
phrased from the ErCB report as follows1:
1.  A fast, gravity-driven local development 


of a steam chamber or “chimney” to the top 
of the SAGD pay zone, probably involving 
sand dilation.


2.  A lateral extension of the pressurized area 
below the fi rst major shale barrier in the 
Upper mcmurray.


3.  One or more shear failures on the edge of this 
pressurized area that allowed the steam to 
breach within a gas zone in and/or under the 
Clearwater caprock.


4.  Signifi cant water and steam storage in the 
localized SAGD chamber, fracture system, 
and Wabiskaw and Upper mcmurray porous 
and permeable sands.


5.   A catastrophic shear failure of the Clearwater 
caprock, leading to the release of steam.


Total (2007) also investigated other possible 
failure mechanisms:
1.  Steam moved up nearby vertical wellbores 


with poor cement bonds.
2.  Steam moved up through natural fractures 


within the reservoir and caprock.
3.  High-pressure steam injection induced verti-


cal fracturing of the reservoir and caprock.


Total concluded that none of these alterna-
tive scenarios was likely and provided arguments 
against each one.


The ErCB (2010) agreed with some, but not 
all, of Total’s (2007) interpretations. The ErCB 
reported1:


Staff reviewed Total’s most likely steam 
release scenario and the three alternative scen-
arios, as summarized below:
1.   Staff agrees that the mini-frac test result 


indicates that only horizontal fracturing of the 
reservoir and caprock would occur at Joslyn 
Creek. Test results may not be representative.


2.  Staff believes it is unlikely that a dilation 
chimney would develop during the four-month 
circulation period of well pair 204-I1P1 and 
provided arguments to support this view.


3.  Staff agrees with Total’s high-density 3-D 
seismic interpretation that the adjacent verti-
cal wells were not within the narrow disturbed 
zone. Seismic may not be accurate.


4.  Staff agrees with Total that the explosive 
nature of the steam release required storage 
of the steam and hot water below the caprock.


5.  Staff believes that Total’s geomechanical 
modelling is reasonable.


In addition, the ErCB (2010) reported alterna-
tive scenarios for steam release1:
1.  Staff believes that the most likely initial path-


ways for steam rise were either a vertical 
fracture or horizontal fracture that propagated 
to a nearby abandoned vertical evaluation 
well and then moved up through gaps in the 
cement plug. Arguments were provided to 
support this view.


2.  Staff agrees with Total that the vertically 
rising steam established communication 
with an Upper mcmurray/Wabiskaw C gas 
zone or the Wabiskaw A sand at the base of 
the Clearwater caprock, and that steam and 
water pooled in one or more of these porous 
and permeable intervals.


3.  Staff believes that it is likely that the large pool 
of high-pressure steam and water eventually 
led to shear failure of the caprock.


4.  Staff believes that natural fractures and 
the presence of silty, sandy intervals in 
the caprock could have contributed to the 
steam release.


The interpretations and conclusions presented 
by Total and the ErCB indicate the cause of the 
Joslyn failure was not defi nitively determined.


FAILURE MORPHOLOgy
The ErCB has concluded that the fracture 
pressure at the horizontal injector exceeded 
the surface 1,800-kilopascal limit and that 
a fracture propagated either horizontally or 
vertically. The logical solution at this step is to 
examine the morphology of the failure. Figure 
1 and Figure 2 provide detailed geophysical 
descriptions.2


The seismic disturbances are not simple. 
Figure 1, which is viewed from below, indicates 
that the existing stratigraphic wells were not 
involved in the failure. more detail is provided in 
a cross-section. It is suggested in Total’s report 
that the fl uid leak-off occurred in stages. The 
shape of this does not correspond to a simple 
vertical fracture or, for that matter, a simple 
horizontal fracture. It is also clear that there is 
some vertical element to the feature. The “pipe” 
or “dilation chimney” in Figure 2 cuts across 
well-defi ned bedding planes and suggests that 
whatever caused the disturbance was likely not 
stratigraphic. The lateral distribution of dilation 
disturbance, which indicates fl uid movement, 
would have to be at high pressure to produce the 
apparent leak-off pattern.


normally, fractures are vertical because 
the horizontal stresses are lower than vertical 
stresses. A vertical “penny-shaped” frac is gen-
erated. At approximately 100 metres, the vertical 
and horizontal stresses are close. The presence 
of the wellbore also disturbs the stress fi eld, and 
this may also affect initial fracture propagation. 
The orientation of the fracture will not be obvious. 
However, we know more than this from three 
main sources: geology, coring and computer 
models. From geology, we see “fl ower bunches” 
of sills and dykes as shown in Figure 3.


Figure 4 shows the fracture trajectories from 
computer simulations utilizing code, developed 
by the Cornell Fracture Group (2010) for an ele-
ment of symmetry, which is a 2-D representation 
of a 3-D feature. It looks like a cup or a saucer. 
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This also matches groundwater remediation 
fracs observed5 and coring from the oilsands 
taken through fracs made with grout, in the 
oilsands6.


The frac pressure in the Joslyn well was 
agreed upon by the ErCB and Total at about 
1,800 kilopascals. The injection only slightly 
exceeded this pressure. It is unlikely that this 
would actually propagate a fracture. Fractures 
will not propagate if just the instantaneous shut-in 
pressure (ISIP) is reached (shown with a red star 
in Figure 57). For the fracture to propagate, addi-
tional pressure is required to overcome friction in 
the fracture, create a stress concentration at the 
tip and overcome tensile strength to actually initi-
ate the fracture needed to breakdown pressure. 
Breakdown pressure is considerably above the 
ISIP. Indeed, the failure took place after surface 
injection pressures had decreased for some time.


A key concept from soil and rock mechan-
ics is effective stress. The concept is shown in 
Figure 6, in which soils are viewed as a pile of 
sand particles that have pore spaces fi lled with 
water. The overburden is supported by both the 
fl uid pressure and the stress in the sand, which 
is transferred in a matrix of contact points. If the 
pore pressures become high enough, the over-
burden is entirely supported by the fl uid pres-
sure, and the sand turns into a slurry. This is also 
known as quicksand.


Figure 7 represents a high-pressure gas 
pipe from deep underground8. The force in the 
pore fl uids that caused this disturbance were 
at a suffi ciently high pressure to cause extreme 
disruption of the rock grain fabric. It suggests 
pressures very much above a mini-frac ISIP 
(depth adjusted). The obvious question is where 
did such high pressures come from? An Internet 
search for some kind of water hammer yielded 
condensation-induced water hammer (CIWH).


Computer modelling was obtained on the 
potential for a condensation-induced water 
hammer within a SAGD well from thermal 
hydraulics experts: Atomic Energy of Canada 
Limited (AECL), a federal laboratory that has 
been responsible for the development of 
Canada’s nuclear program. The preliminary 


study9 modelled a very simple valve-closure 
event. The many spikes shown in Figure 8 are 
well above fracture propagation pressures 
and/or overburden stresses. The pressure 
spikes are explained by AECL as follows:


“Water hammer is defi ned as the change in 
pressure that occurs in a fl uid system as a result 
of a change in the fl uid velocity. This pressure 
change is a result of the conversion of kinetic 
energy into pressure, which creates compres-
sion waves, or the conversion of pressure 
into kinetic energy, which creates rarefaction 
waves.... Water hammer–induced compression 
waves represent a potential threat to piping and 
component integrity and thus represent an im-
portant safety concern.”


Surface steam lines must, by code, have 
“steam traps” to drain condensate from steam 
lines to prevent explosions. To date, SAGD hori-
zontal wells have not had stream traps installed 
and CIWH calculations are not standard pro-
cedure10. In horizontal cyclic steam stimulation 
wells, tungsten carbide ports have been installed 
on liners within the slotted liners to provide con-
formance control with signifi cant success. This 
prevents over-development of the steam cham-
ber at the heel (which, coincidently, is where the 
Joslyn failure occurred).


The Joslyn failure is a signifi cant catas-
trophic failure affecting licensing of new SAGD 
developments. The existing reports prepared 
by the Government of Alberta and Total sug-
gest possibilities of multiple mechanisms. The 
cause of the failure has not been conclusively 
determined. Total and the ErCB have expended 
considerable effort and resources in evaluating 
the failure at Joslyn; however, there are other 
possible mechanisms that could be investi-
gated. One such mechanism is condensation-
induced water hammer in the horizontal sections 
of SAGD injectors and producers. This article 
suggests that high pressures in the wellbore, 
which greatly exceeded overburden and fracture 
pressures, could have led to a high-pressure 
subsurface gas pipe and a fracture to surface. 
Considerably more research is required to con-
clusively resolve this issue. 
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From: Mike Carlson [mailto:appliedreservoir@lightspeed.ca] 
Sent: August-06-14 11:39 AM
To: 'Reservoir Containment'
Subject: RE: AER draft shallow caprock criteria
 
Steve,
 
Hope this helps.
 
Mike
 
M.R. (Mike) Carlson, P.Eng.
President
Applied Reservoir Enterprises Ltd.
Unit 35, 5400 Dalhousie Drive NW
Calgary, Alberta
CANADA T3A 2B4
 
Phone: 403.284-1104
Cell:     403.399-7151
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From: Reservoir Containment [mailto:Reservoir.Containment@aer.ca] 
Sent: July-29-14 8:20 AM
To: appliedreservoir@lightspeed.ca
Subject: FW: AER draft shallow caprock criteria
 
As requested, attached are five AER reports. Also, attached is a letter describing the current
consultation process and a feedback form.
 
 

From: Mike Carlson [mailto: ] 
Sent: Friday, July 25, 2014 12:51 PM
To: Steve Thomas
Subject: AER draft shallow caprock criteria
 
Steve,
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Could ARE get a copy?
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