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Alberta Energy Regulator

The AER is requesting technical, evidence-based feedback on five technical reports. Fill in a separate feedback form for each technical report. Submit completed forms by e-mail to reservoir.containment@aer.ca. Attach any supporting evidence.



Please indicate the technical report that this feedback relates to: 



To create a new row, place your cursor at the end of the text in the last box and hit tab.



		Section and page number

		Issue

		Possible solution or recommendation

		Rationale to support solution or recommendation



		Limitations with Currently Used Geomechanical Models, Section 3 – Geomechanical Modeling, pages 2-3

		“Working with uncertainty and variability in processes, properties, loading conditions and load history, initial and boundary conditions, etc., is unavoidable in rock engineering. Therefore, the reliability and credibility of a geomechanical model are always relative, subjective, and case-dependent (Jing, 2003).” and “The presence of these problems does not mean that one cannot supply rock characterization parameters, but it does mean that the limitations of numerical modelling must be carefully considered.”

And from the summary document: “Considering the limitations of geomechanical modelling, the MOP formula provides a more acceptable level of risk with respect to tensile failure by ensuring that the steam injection pressure is 80 per cent of the caprock fracture closure pressure at the shallowest base of the caprock.”

		We agree that the models should be carefully considered. We disagree that they are to be dismissed as useful in modeling caprock tensile failure and that the proposed, simplistic MOP formula is a better approach.

Rigorous uncertainty analysis and parameter sensitivity analysis should be performed on the currently-used models prior to dismissing them. We do not refer to commonly-applied “one-at-a-time” sensitivity analysis  (a.k.a. knob-tweaking), but rather well-established techniques that, while rarely applied in the oil and gas industry, have been successfully used in other fields for decades. Canadian Discovery has vetted this idea with operators, academia and the AER and has found unanimous support. 

		An excellent example from the medical field is “Sensitivity and Uncertainty Analysis of Complex Models of Disease Transmission: 
an HIV Model, as an Example,” S.M. Blower 
and H. Dowlatabadi, International Statistical Review, 62(2), 229-243, 1994. In this study, a complex model with 34 ordinary differential equations, 20 input parameters and 10 state variables was examined using well-established statistical approaches. The result was the identification of three key parameters that had the most important effect on the model outcomes. “The results of the sensitivity analysis can be used to focus data collection effort because the analysis identifies which parameters (due to their estimation uncertainty) are important in the prediction precision of adult AIDS cases.”

[bookmark: _GoBack]The usefulness and rationale for such an analysis is nicely summarized at the following website: http://dpannell.fnas.uwa.edu.au/dpap971f.htm.
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Sensitivity and Uncertainty Analysis of 
Complex Models of Disease Transmission: 
an HIV Model, as an Example 
S.M. Blower and H. Dowlatabadit 
School of Public Health (Epidemiology) 140, Earl Warren Hall, University of California, 
Berkeley, California 94720, USA. tDepartment of Engineering & Public Policy, Carnegie 
Mellon University, Pittsburgh, PA 15213 USA. 


Summary 


HIV transmission models have become very complex. The behavior of some of these models may 
only be explored by uncertainty and sensitivity analyses, because the structural complexity of the 
model are coupled with a high degree of uncertainty in estimating the values of the input 
parameters. Uncertainty analysis may be used to assess the variability (prediction imprecision) in 
the outcome variable that is due to the uncertainty in estimating the input values. A sensitivity 
analysis can extend an uncertainty analysis by identifying which parameters are important in 
contributing to the prediction imprecision (i.e., how do changes in the values of the input 
parameters alter the value of the outcome variable). In this paper an uncertainty and a sensitivity 
analysis are described and applied; both analyses are based upon the Latin Hypercube Sampling 
(LHS) scheme, which is an extremely efficient sampling design proposed by McKay, Conover & 
Beckman (1979). The methods described in this paper have not previously been applied to 
deterministic models of disease transmission, although these models have many characteristics in 
common with the risk assessment models that the strategies were designed to investigate. The utility 
of the LHS uncertainty and the LHS/PRC (Latin Hypercube Sampling/Partial Rank Correlation) 
sensitivity analysis techniques are illustrated by analyzing a complex deterministic model of HIV 
transmission. 


Key words: Uncertainty analysis; Sensitivity analysis; Sampling design; Mathematical models; 
Epidemiology. 


1 Introduction 


Mathematical models of disease transmission consist of a series of equations, these 
equations are formulated based upon specific epidemiological assumptions; such models 
may be utilized as epidemiological tools (Blower & Medley, 1992). Many models have 
been formulated to investigate the transmission dynamics of the human immunodeficiency 
virus (HIV), see for examples: Anderson, Gupta & May, 1991; Anderson, May & 
McLean, 1988; Blower, 1991; Blower et al., 1991; Dietz & Hadeler, 1988; Jacquez et al., 
1988; Koopman et al., 1988; Le Pont & Blower, 1991; May, Anderson & Blower, 1989. 
The initial simple HIV transmission models have been refined to include behavioral 
heterogeneity, mixing patterns for the selection of sexual and drug-sharing partnerships 
and variable infectivity of the virus. The simple transmission models can be solved 
analytically; however, the behavior of the complex models may only be understood by 
numerical analysis. Uncertainty analyses and sensitivity analyses are necessary to explore 
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the behavior of many of these complex models, because the structural complexity of the 
models are coupled with a high degree of uncertainty in estimating the values of many of 
the input parameters. Uncertainty analysis may be used to assess the variability 
(prediction imprecision) in the outcome variable that is due to the uncertainty in 
estimating the values of the input parameters (Iman & Helton, 1988). A sensitivity 
analysis can extend an uncertainty analysis by identifying which input parameters are 
important (due to their estimation uncertainty) in contributing to the prediction 
imprecision of the outcome variable; therefore, a sensitivity analysis quantifies how 
changes in the values of the input parameters alter the value of the outcome variable 
(Iman & Helton, 1988). 


One approach to a sensitivity analysis is to use a full factorial sampling design; this 
sampling scheme uses every value of each parameter and forms every possible 
combination of parameter values. This analysis has the advantage that the entire 
parameter space is explored, but this design is extremely time consuming and hence 
impractical for complex transmission models that contain a multitude of parameters. An 
alternative sensitivity analysis design, for a K parameter model, is to fix the values of 
K- 1 parameters and to vary only the value of the Kth parameter over a specified range. 
This sensitivity analysis design has the advantage that it is simple and quick, but it suffers 
from major disadvantages: only one parameter may be varied at a time, only a small 
region of the K -dimensional parameter space can be explored, and the values of the K - 1 
parameters have to be estimated with a very high degree of precision. 


More sophisticated and efficient statistical analysis techniques, that allow for the 
simultaneous variation of the values of all the input parameters, have been applied to 
explore the behavior of complex economic, engineering, chemical and physical models. 
One such technique is based upon Latin Hypercube Sampling (LHS); LHS is a type of 
stratified Monte Carlo sampling and may be viewed as an extension of Latin Square 
sampling (Iman & Helton, 1988; McKay, Conover & Beckman, 1979). LHS was first 
proposed by McKay, Conover and Beckman (1979) to aid in the analysis of evaluating 
reactor safety. In LHS the estimation uncertainty for each input parameter is modelled by 
treating each input parameter as a random variable. Probability distribution functions 
(pdfs) are defined for each parameter, each of the marginal distributions are stratified and 
the value of each input parameter is then randomly chosen (McKay, Conover & 
Beckman, 1979). LHS is an extremely efficient sampling design because each value of 
each parameter is used only once in the analysis. An input vector is generated (composed 
of the random samples of each of the input parameters) for each computer simulation of 
the deterministic model. The model is then run N times. Distribution functions for each of 
the outcome variables can be directly derived, because of the probabilistic selection 
technique, hence LHS enables the results of a deterministic model to be interpreted 
within a statistical framework (Iman & Helton, 1988; lman, Helton & Campbell, 1981a). 
The distributions may be characterized by simple descriptive statistics; at this stage the 
LHS uncertainty analysis is complete. A sensitivity analysis may then be performed by 
calculating partial rank correlation coefficients (PRCC) for each input parameter 
(sampled by the LHS scheme) and each outcome variable (Iman & Conover, 1980; Iman 
& Helton 1988; lman, Helton & Campbell, 1981a). 


The LHS design has been compared with simple random and fractional stratified 
sampling designs and it has been demonstrated that, if the outcome variable is a 
monotonic function of each of the input parameters, the LHS design is the most efficient 
design for estimating the mean value and the population cumulative distribution function 
(McKay, Conover & Beckman, 1979). Stein (1987) has also compared LHS with simple 
random sampling and demonstrated that if sample sizes (i.e., the number of computer 
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simulations) are large, LHS is the most efficient design (i.e., the variance of the estimate 
of the expectation of the function of the outcome variable is less than if simple random 
sampling is used), even if the monotonicity assumption does not hold. Iman & Helton 
(1988) have compared three uncertainty and sensitivity analysis techniques: response 
surface methodology using input derived from a fractional factorial design, LHS with and 
without regression analysis, and differential analysis. The same three methods were 
applied to the analysis of three large computer models. The techniques were compared on 
the basis of several criteria: ease of implementation, flexibility, estimation of the 
cumulative distribution function of the outcome variable, and adaptability. Judged on the 
basis of these criteria, LHS and regression analysis were rated the best techniques (Iman 
& Helton, 1988). Handcock (1989) also found that LHS can be at least an order of 
magnitude more efficient than simple random sampling; for example, a LHS scheme with 
108 simulations can achieve similar results to a simple random sampling scheme that 
requires 7,700 simulations (Handcock 1989). 


The LHS uncertainty analysis and the LHS/PRCC sensitivity analysis techniques have 
not previously been applied to deterministic disease transmission models. However, 
disease transmission models have many characteristics in common with the risk 
assessment models that these strategies were designed to investigate. The model 
characteristics may be summarized as follows: (i) the models have many uncertain 
parameters, (ii) the outcome variables are non-linear functions of the parameters, (iii) the 
full range of each input parameter needs to be investigated, and (iv) the models are 
computationally taxing, hence it is desirable to complete the sensitivity analysis with the 
minimum possible number of computer runs. In this paper the LHS uncertainty and the 
LHS/PRCC sensitivity analysis techniques are described in detail, and the utility of these 
techniques are illustrated by analyzing a complex deterministic model of HIV 
transmission. 


2 The HIV transmission model 


The deterministic mathematical model used to illustrate the techniques was formulated 
by one of the authors (SB) to assess the epidemiological consequences of heterosexual, 
intravenous drug use and perinatal transmission of HIV. The model was designed to 
reflect the specific transmission dynamics of these three processes in New York City 
(NYC). The model has been used to suggest a new explanation for the observed 
intravenous drug use (IVDU) seroprevalence pattern in NYC, and to explore the effect of 
the heterosexual transmission risk factor on increasing the risk of HIV infection in 
intravenous drug users (see Blower, 1991 and Blower et al., 1991). The model has also 
been used to predict future numbers of adult and pediatric AIDS cases in NYC, to assess 
the variability in these prediction estimates, and to identify the key variables that 
contribute to this prediction imprecision. The model is deterministic, consequently the 
prediction imprecision is due to the uncertainty in parameter estimation. The model 
consists of thirty four ordinary differential equations, containing twenty parameters. 
These equations define the transmission of the virus within and among ten risk groups 
(which are represented by ten state variables): eight subpopulations of intravenous drug 
users and two subpopulations of non-intravenous drug users. A complete presentation of 
the model and the biological justification of the structure of the model is reported 
elsewhere (Blower et al. 1991); parameter definitions are given in Table 1. The structural 
complexity of the model coupled with a high degree of uncertainty in estimating both the 
values of the input parameters and the initial values of the state variables, necessitated the 
application of the LHS uncertainty analysis and the LHS/PRC sensitivity analysis. 
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Table 1 


Parameter definitions for the HIV model. All of the transmission efficiencies are 
conditional on the fact that the partner or needle is infected. 


f3cth 
f3ctn 
f3rm 
f3mr 
cfh(t) 
Cr,(t) 
Crn(t) 
Cmb(t) 
Cm,(t) 
Cmn(t) 


HIV transmission efficiency per buddy partnership 
HIV transmission efficiency per needle injection 
heterosexual transmission efficiency per partnership (female to male) 
heterosexual transmission efficiency per partnership (male to female) 
rate of change of sex partners per year (female buddy-users) at timet 
rate of change of sex partners per year (female stranger-users) at timet 
rate of change of sex partners per year (female non-IVDUs) at timet 
rate of change of sex partners per year (male buddy-users) at timet 
rate of change of sex partners per year (male stranger-users) at timet 
rate of change of sex partners per year (male non-IVDUs) at timet 
rate of sharing needles per year (for female stranger-users) 
rate of sharing needles per year (for male stranger-users) 
rate of change of buddy partners per year (for female buddy-users) 
rate of change of buddy partners per year (for male buddy-users) 
vertical transmission efficiency (seropositive mother, without AIDS) 
vertical transmission efficiency (AIDS mother) 
average adult survival time (years) 
average pediatric survival time (years) 
average adult incubation time (years) 
average pediatric incubation time (years) 


3 Methodology 


The LHS/PRC technique involves seven steps: 


3.1 Define Probability Distribution Functions for Parameters and State Variables 


A mathematical model contains a certain number of parameters and state variables, the 
estimated values for all, or only a subset, of these will be uncertain. In the HIV model all 
ten state variables and twenty parameters were uncertain; pdfs were assigned to each 
parameter (see Table 2), the biological justification for the choice of these pdfs is 


Table 2 


Parameter distribution functions 


Standard 
Parameter Min Max Median deviation Function shape 


f3cth f3ctn 1 0·56 0·23 triangular (peak at f3ctnl 
f3ctn 0 1 0·28 0·23 triangular (peak at 0·0) 
f3rm 0 0·5 0·25 0·15 uniform 
f3mr 0 0·5 0·25 0·15 uniform 
cfh(t) 1 11 1 1·74 left skewed 
Crn(t) 1 20 2·19 2·46 left skewed 
cr,(t) 1 100 2 20.99 left skewed 
Cmh(t) 1 20 1 3·02 left skewed 
Cmn(t) 1 38 2 4·98 left skewed 
Cms(t) 1 15 1 2·94 left skewed 
ir 13 5,265 299 1,201 left skewed 
im 13 3,120 228 738 left skewed 
jf 0 4 1·8 0·77 triangular (peak at 1·0) 
jm 0 4 1·8 0·76 triangular (peak at 1·0) 
ql 0 1 0·28 0·23 triangular (peak at 0·0) 
q2 ql 1 0·56 0·23 triangular (peak at q 1) 


s, 1·0 5·0 1·0 0·85 left skewed 
sb 0·21 4·8 1-04 1-09 left skewed 
v. 1·36 20 8 3·71 Wei bull 
vb 0·1 20 0·33 & 5·5 4·99 mixture of two Weibulls 
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discussed in detail elsewhere (Blower et al., 1991). The HIV model included specific 
biological assumptions which resulted in three parameter constraints: (i) heterosexual 
transmission efficiencies (during a sexual partnership) were assumed to be symmetrical 
(i.e., f3mr was set equal to f3rm; hence only nineteen parameters were sampled), (ii) the 
probability of HIV transmission through needle sharing was assumed to be greater if 
many needles are shared than if only one was shared (i.e., f3ctb > f3ctn), and (iii) the 
probability of a baby being born infected with HIV was assumed to be higher, if the 
mother had acquired immunodeficiency syndrome (AIDS), than if the mother was 
infected with HIV, but did not show signs of AIDS (i.e., q2 > q 1). 


The values of the ten state variables (at time zero) reflected the sizes of the ten risk 
groups at the beginning of the epidemic. The complex interdependencies of eight of the 
state variables (the eight groups of intravenous drug users) are shown in Fig. 1. The initial 
values of these eight state variables were not statistically independent: for each simulation 
run the total population size of intravenous drug users (at time zero) was maintained at 
200,000 individuals and the sex ratiq (at time zero) was kept constant at 3: 1 
(males: females), (for a biological justification of these constraints see Blower et al., 1991). 
The initial sizes of the eight risk groups of intravenous drug users were generated by using 
six independent probability functions; the functions and the sampling design are shown in 
Fig. 1 (it can be seen that only four of the eight intravenous drug using risk groups were 
randomly sampled). The two remaining state variables (the male and female sex partners 
of intravenous drug users, who do not use intravenous drugs themselves) were assigned 


GGGG 
Probability= r1 
o.DI ~ n ~ 0.5 


Probabilily = 6 
6= 1-n 


Any New Sex Partners Since t- Q? 


Probabilily = n· 
o.DI s n· s 0.5 


1\ 
Probabili•y = 6' 


6'= l·n' 


88888888· 
Probability= P Probability= P' Probability= P" Probability= P'H 
O.OO~P:!> l.O O.OOSP'S: 1.0 O.OOS:PHS 1.0 O.oosp-s: 1.0 


Probability= Q Probability= Q' Probability= QM Prob::~bility = Q'-' 
Q=l·P Q'=I·P' Q"=I·P" Q"'=I·P'". 


Figure 1. Setting the initial values of the intravenous drug using (IVDU) risk groups. The IVDU population (at 
time zero) was set to 200,000 individuals, in each simulation; however, the sizes of the eight risk groups of 
intravenous drug users varied from run to run. As, the diagram above shows, not all of the subgroups were 
independent of each other. The sizes of the eight subgroups were defined by the six probability functions shown 
above. 
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(at time zero) by sampling from a seventh pdf. The size of the female subpopulation (F) 
was sampled over the range 100,000 to 150,000 and the size of the male subpopulation 
(M) was then assigned: M = 200,000- F. Hence, the initial values of the ten state 
variables (risk groups) were generated from seven pdfs. 


3.2 Calculate the number of simulations (N) 


The LHS design involves sampling without replacement; therefore, if only K draws are 
to be made (where K equals the number of uncertain variables) the Kth draw would be 
predetermined. Hence, the lower limit to the value of N (where N equals the number of 
simulations) should be at least K + 1. An exact formula to calculate N does not exist in 
the literature; although, an inequality that has to be satisfied (N > 4/3K) has been 
empirically established (McKay, Conover & Beckman, 1979). The appropriate sample size 
(N) for a specific analysis should also be determined by the desired significance level for 
the partial rank correlation coefficients. In the present analysis, N was set to 100. 


3.3 Divide the range of each of the K parameters into N equi-probable intervals 


The range of each parameter was divided into N non-overlapping equiprobable 
intervals (where N is the number of simulations) and each interval was sequentially 
assigned a sampling index from 1 to N (see Fig. 2). The parameter being sampled is x, 
therefore there are N sample values of x: x 1, x2 ... xN. The limits of each interval (x;,in 


Parameter A 


Parameter B 


[2] First Sample 


Expected 
Value 


• Second Sam ole 


N 


Equi-probable 
slices of A and B 


~ Third Sample 


Figure 2. Creating and sampling the equi-probable interoals. In the Latin Hypercube Sampling design, each 
parameter is defined in terms of a probability density function (pdf). These pdfs are sliced into N equi-probable 
intervals-where N is the number of simulations. For each simulation a value for each parameter is selected from 
one of these interoals at random. and without replacement. 
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and x;,ax; where i, the sampling index number is 1, 2, ... N) have to be ascertained. 
Define the pdf of parameter x to be f(x ), the integral of f(x) to be F(x) and the inverse 
of F(x) to be F- 1(x). If the function is normalized then: 


[F(x)]xm, = 1. 
Xmm 


The area under each equiprobable interval is equal to 1/ N, which is 0·01 in the current 
analysis. 


1/N = f~'"t(x) dx = F(x;,ax)- F(X;,in)· 
.tmin 


The lower interval limit of the first interval (x:nin) is set equal to the minimum value of the 
range of f(x ), and the upper interval limit cx:nax) is determined from the evaluation of: 


Interval limits for the remaining intervals are calculated by setting the minimum value for 
the next interval ex;;:;~) to be equal to the maximum value for the previous interval 
cx:nax) and repeating the whole process. 


3.4 Create the LHS table 


The LHS design involves random sampling without replacement; every equiprobable 
interval of each input variable is sampled once. An LHS table is generated as an N * K 
matrix, where N is the number of simulations and K is the number of sampled input 
variables. The LHS design was first proposed by McKay, Conover & Beckman (1979); a 
computer program, based upon this methodology, is available for generating LHS tables 
(Iman & Shortencarier, 1984). N sampling indices of the first variable are paired randomly 
with N sampling indices of the second variable, these N pairs are then paired randomly 
with the N values of the third variable, random pairing continues until all K input 
variables are included and the N * K matrix has been generated (Iman, Helton & 
Campbell, 1981a; McKay, Conover & Beckman, 1979). The LHS design was originally 
proposed for models, where all of the input variables were statistically independent. Iman 
& Conover (1982) have extended the initial methodology to incorporate statistical 
dependencies. The new method replaces the random pairing of the N values of each input 
parameter with restricted pairing (Iman & Conover, 1982). This new technique may be 
appropriate for both independent variables (because restricted pairing can reduce 
spurious correlations and ensure that all the rank correlations are close to zero) and 
dependent variables (because restricted pairing can induce the desired rank correlation 
between input variables) (Iman & Conover, 1982; Iman & Davenport, 1982; Iman & 
Helton, 1988). 


Stein (1987) has suggested that the restricted pairing technique might be an inappropri
ate method for generating joint disrribution functions; for example, if two input 
parameters are related in a non-monotonic fashion, then inducing dependencies through 
rank correlation coefficients is inappropriate. Stein (1987) proposed a new method for 
incorporating dependencies among the input variables, so that each sample vector has 
approximately the correct joint distribution (if sample sizes are large). His method is as 
follows. Assume that the joint distribution of the random vector X of the K input 
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variables is given by F; Fk is the cumulative distribution function of Xk and Xjk is the kth 
component of the jth vector. Assume that it is possible to produce N iid vectors of these 
input variables, Y 1, ••• , Y N, with each Y; having the correct joint distribution F. Form an 
N * K matrix with these vectors, each Y; is a row in this matrix. Then replace (for 
k = 1, ... , K) each element of the kth column of this matrix by its rank in the column; 
assume each input parameter is continuous and hence there are no ties. Call the new 
matrix of ranks R and the jkth element of this matrix is referenced as rjk· The LHS table is 
now formed by generating a new matrix, the jkth element of this matrix is defined by: 


zjk = FJ: 1N- 1('ik + ~-k- 1) 


where gjk (j = 1, ... , N; k = 1, ... , K) be NK iid random variables, uniformly distributed 
on [0, 1]. It should be noted that if all the input parameters are independent, then this 
approach will also produce the correct joint distribution. This technique uses more than 
the rank correlation structure to approximate the actual joint distribution, however as 
Stein (1987) discusses the approach may suffer from two disadvantages: (1) if the 
analytical solution of FJ: 1 (the inverse cumulative distribution fucntion of Y k) cannot be 
obtained, then FJ: 1 has to be simulated, this simulation process may require an extremely 
large number of computer runs. (2) If N is too small then this sampling process may not 
reflect adequately the actual joint distribution. See Stein (1987) for a further discussion of 
this method. 


The LHS table that was generated for the HIV model was a 100 * 26 matrix (100 
simulations* 19 parameters plus seven pdfs for the state variables at time zero-see 
Section 3.1); the coefficients in the matrix were the sampling indices for the pdfs of the 
twenty six pdfs. 


3.5 Sample the values of the input parameters & perform the N simulations 


The LHS table was used to generate a 100 by 30 (100 simulations* twenty parameters 
plus ten state variables at time zero) input matrix. The sampling indices in the LHS table 
were replaced by the values of the parameters and the state variables by using the pdfs 
shown in Table 2; the sampling constraints (f3db > f3dn and q2 > q1-see Section 3.1) were 
satisfied at this stage. The values of f3dn and q1 were determined by simply replacing the 
sampling indices with the corresponding values from the pdfs given in Table 2. For the ith 
simulation (where i = 1, ... , N) the minimum possible value of f3~b was set to the value of 
f3~n and the minimum possible value of q~ was set to the value of q~. The values of f3~b 
and q~ were then sampled using the appropriate sampling indices from the LHS table; 
however, the indices referred to a different pdf for each simulation run. The pdfs of the 
sampled values for f3dn and f3db are presented in Fig. 3. Two features of this figure should 
be noted. First, that although the two parameters can assume values in the range from 0 
to 1, their values f3~n and f3~b for each run i, satisfy the constraint f3db > f3dn· Second, that 
while the sampled values for f3dn are as defined in Table 2 (triangular, with a peak at 0·0), 
the sampled values for f3db do not have to resemble the pdf defined in Table 2 (triangular 
with a peak at f3dn)· In practice, the shape of the pdf for f3db will vary according to the 
LHS table being used; each time f3dn is changed, f3db will also change. The sampling 
indices for the seven probability functions were used to sample the values of five of the 
state variables at time zero (see Section 3.1). The initial values of the remaining five state 
variables (at time zero) were then generated, they were perfectly inversely correlated to 
the five sampled state variables (see Section 3.1). This input matrix was then used to 
generate 100 runs of the HIV model; the Runga-Kutta 4th order numerical method was 
used in the simulations. 
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Probability of HIV Transmission From a Single Infected Needle· B tin 


Frequency 
Within 


30 


Probability 
Interval 20 


lO 


0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 


Probability of 
Transmission 


Probability of HIV Transmission From an IVDU Buddy Partnership· B db 


20 


Frequency 
Within 


Probability 
Interval 


10 


0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 


Probability of 
Transmission 


0.8 


Bt~n 
Mean= .32 


S.d. = .23 
Min.= 00 
Max. = .92 


0.9 1.0 


Bdb 


Mean= .54 
S.d. = 23 
Min.= 05 
Max. = .94 


0.9 1.0 


Figure 3. Histograms of HIV IVDU transmission probabilities; the samplmg constraint {3dh > {3"" holds (i.e., in a 
buddy partnership more than one needle is shared). In preparing the data for the ith run of the model, {3;,,. was 
selected from a triangular distribution, (with its minimum value and peak at zero). and {3~h was selected from a 
triangular distribution. (with a minimum value and peak set equal to {3;1,.). Hence, in the two histograms shown 
above, f3dn is triangular and {3dh is skewed to the right. 


3.6 Analysis of Model Outcomes: Uncertainty Analysis 


The results of the simulation runs of the model consist of N observations of each 
outcome variable. Distribution functions for each of the outcome variables can be directly 
derived and characterized by simple descriptive statistics. Any particular run of the model 
is unlikely to have all the key parameters at the various extrema which would be 
necessary for the whole system to be at an absolute minimum or maximum value: 
consequently, the N observations correspond to a range of probable outcomes rather than 
the absolute lower and upper bounds of the system. At this stage the uncertainty analysis 
is complete, the variability (prediction imprecision) in the outcome variable that is due to 
the parameter and state variable estimation uncertainty has been determined. The results 
from the uncertainty analysis of the HIV model are discussed in a later section. 
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3. 7 Analysis of Mode! Outcomes: Sensitivity Analysis 


The N observations of each outcome variable may be used to assess the sensitivity of 
the outcome variables to the estimation uncertainty in the input parameters. The pdfs of 
the input variables for a disease transmission model are rarely normally distributed and 
the outcome variables are generally non-linear functions of the input variables; hence, 
non-parametric tests of ranked data are necessary (Conover 1980). In the LHS scheme, all 
of the parameters are varied simultaneously and the input parameters are often 
interdependent; therefore, PRCC can be used to evaluate the statistical relationships. 
Calculation of PRCC enables the determination of the statistical relationships between 
each input parameter and each outcome variable while keeping all of the other input 
parameters constant at their expected value (Conover, 1980). This procedure enables the 
independent effects of each parameter to be determined, even when the parameters are 
correlated. A PRCC indicates the degree of monotonicity between a specific input 
variable and a particular outcome variable; therefore only outcome variables that are 
monotonically related to the input parameters should be chosen for this analysis 
(Conover, 1980; Iman & Helton, 1988; Iman & Conover 1980). Monotonicity can be 
assessed by examining scatterplots, each input variable should be plotted against each 
outcome variable. The sign of the PRCC indicates the qualitative relationship between 
each input variable and each output variable. The magnitude of the PRCC indicates the 
importance of the uncertainty in estimating the value of the input variable in contributing 
to the imprecision in predicting the value of the outcome variable. The relative 
importance of the input variables can be directly evaluated by comparing the values of the 
PRCC. Calculation of PRCC is shown in Appendix A. 


4 Results for the HIV Transmission Model 


4.1 Uncertainty Analysis 


The LHS uncertainty technique was used to explore the effect of the uncertainty in 
estimating the values of the input variables on the prediction precision of two outcome 
variables: the cumulative number of adult and pediatric AIDS cases at the end of thirty 
years. The empirical frequency distributions for these two outcome variables were directly 
derived from the results of the uncertainty analysis, these distributions are presented and 
discussed elsewhere (Blower et al., 1991). The descriptive statistics for these distributions 
are given in Table 3. The results indicate that the prediction precision of the model is 


Table 3. 


Descriptive statistics from the uncertainty analysis 


Minimum 
Maximum 
Mean 
Median 
Variance 
5th percentile 
95th percentile 


Cumulative number of aids cases 
in 30 years 


Adult cases Pediatric cases 


49,134 246 
347,420 161,615 
238,571 37,330 
257,085 22,663 
4·7 *109 1·2*109 


116,422 1,780 
333,932 108,173 
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fairly low, due to the high degree of estimation uncertainty for the initial values of the 
input variables. This technique enables the degree of prediction imprecision to be 
quantified, and used as a basis for comparing the expected results (i.e., the models' 
predictions) with the observed results. The predictions of the HIV model have been 
compared with the cumulative number of adult and pediatric AIDS cases that have been 
observed in NYC (Blower et al., 1991). 


4.2 Sensitivity Analys1s 


PRCC were calculated between each of the input parameters and two outcome 
variables: the cumulative number of adult and pediatric AIDS cases at the end of thirty 
years. Scatterplots (of each input parameter against each outcome variable) were 
generated and examined to check that the assumption of monotonicity was satisfied. 
These PRCC were used to identify the key input variables that contributed to the 
prediction imprecision; the PRCC results are presented in Table 4. It can be found from 
Table 4 that the uncertainties in estimating the values of three parameters (the two 
heterosexual transmission efficiencies and the average adult incubation period) are the 
most critical in affecting the prediction precision of the future number of adult AIDS 
cases. The estimation uncertainty of these three parameters are also critical in 
contributing to the prediction precision of the number of pediatric AIDS cases, however 
in this case the vertical transmission efficiency is also of great importance (see Table 4). 
The results of the sensitivity analysis can be used to focus data collection effort because 
the analysis identifies which parameters (due to their estimation uncertainty) are 
important in the prediction precision of adult AIDS cases. 


The sign of the PRCC identifies the specific qualitative relationship between the input 
and the output variable; the qualitative relationships are the same for all of the key 
variables, except the average incubation periods. The positive value of the PRCC for the 
majority of the variables implies that when the value of the input variable increases, the 
future number of AIDS cases will also increase. The future number of AIDS cases 
decreases as the average incubation period lengthens, because even though individuals 


Table 4 


Partial rank correlation coefficients 


Adult cases Pediatric cases 


Parameter PRCC Parameter PRCC 


f3mr& f3rm 0·84*** q, 0·77*** 
Va -0·72*** f3mr& f3rm 0·77*** 
{3dh 0·35*** Va 0·51 *** 
Crn(O) 0·29** x., 0·36*** 
Cmn(O) 0·29** Cmh(O) 0·36*** 
Cmh(O) 0·25* Sa 0·35*** 
Cms(O) 0·23* vh -0·30** 
jm 0·22* Cms(O) 0·28** 
c,,(O) 0·21 * x,,{O) 0·20* 
f3dn 0·20* 


The PRCCs are between the input values of the 
biological-behavioural transmission parameters and the 
output values (the cumulative number of adult and pediat
ric AIDS cases in 30 years). The results are significant at 
the 0·05 level (*), the 0·01 level (**) or the 0·001 level 
(***). 
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remain infectious for a longer period and consequently can infect more individuals, the 
rate of progression to disease decreases. The epidemiological implications of these PRCC 
results are discussed in detail elsewhere (Blower et al., 1991). 


5 Discussion 


The uncertainty analysis described in this paper is based upon the assumption that the 
input parameters are statistically independent, hence the LHS scheme uses marginal 
distributions. However, if some of the input parameters are statistically dependent and 
consequently certain combinations of parameters are actually more likely to occur than 
others, then it is necessary to sample from the appropriate joint distribution function (as 
described in Section 3.4). If the parameters are statistically dependent and marginal 
distributions are used then the output from the uncertainty analysis will not reflect 
adequately the prediction imprecision of the model. Therefore, before an uncertainty 
analysis is undertaken it should be checked that the assumptions of statistical indepen
dence of the input parameters are satisfied by analyzing the available data, or else it 
should be clearly stated that the model is being used as a thought experiment (sensu 
Blower & Medley 1991) to assess the independent effects of each input parameter. 
Furthermore, several independent Latin Hypercube samples could be obtained and 
analyzed. Replicated sampling will have two benefits: (i) replicates will contain different 
combinations of parameter values, consequently any effects that are due to unlikely 
combination of parameter values will be diluted, and (ii) the outputs from the replicates 
can be used to obtain standard errors for the outcome variables of interest (Iman & 
Conover 1980). 


The sensitivity analysis described in this paper uses the magnitude of the PRCC to 
indicate the importance of the uncertainty in estimating the value of the specific input 
variable in contributing to the prediction imprecision of the outcome variable. As 
discussed in Section 3.7 a PRCC indicates the degree of monotonicity between the specific 
input variable and the particular outcome variable. The monotonicity assumptions were 
satisfied in the analysis of the NYC HIV model; HIV transmission models tend to be 
fairly stable and do not show chaotic behavior (Bob May, personal communication). 
However, some other disease transmission models (for example, certain measles models) 
may exhibit chaotic behavior over certain regions of the parameter space. Consequently, 
before initiating a sensitivity analysis, it is necessary to conduct preliminary investigations 
of the behavior of the model; scatterplots of input variables against outcome variables can 
be used to detect discontinuities (Iman & Helton 1988). If the monotonicity assumptions 
are not satisfied, then calculation of PRCC is inappropriate. It is possible that certain 
input parameters may be non-monotonically related to the outcome variable and 
consequently have a low PRCC, but may produce sizeable changes in the outcome 
variable; therefore, any input parameters that are non-monotonically related to the 
outcome variables should be discussed along with the results of the PRCC. In interpreting 
the results of any sensitivity analysis it should be stressed that the PRCC results are 
derived from a specific model structure and that similar results may not be obtained from 
other models. 


For some models the pdfs of certain of the input parameters may be unknown, and in 
these cases it is important to explore distributional effects (i.e., the effect of the pdfs of 
the input parameters on the values of the outcome variables) (Iman & Conover 1980; 
Iman, Helton & Campbell 1981a). Multiple uncertainty and sensitivity analyses could be 
completed, each analysis could include a different set of pdfs. The results of these multiple 
uncertainty and sensitivity analyses could then be compared to assess the distributional 
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effects. Iman & Conover (1980) have also developed a weighting scheme for investigating 
distribution effects without the need for additional computer simulations. 


The techniques used in this paper can be extended and coupled with stepwise or rank 
regression in order to determine how much of the variation in the outcome variables is 
due to each of the key input variables, that were identified by their PRCC (Iman, Helton 
& Campbell 1981b ). Therefore, the LHS/PRCC sensitivity analysis can be used as an 
initial step in the construction of response surfaces; the key input variables can be used as 
the best subset of predictor variables to determine the relationship between the 
independent and dependent variables (Iman, Helton & Campbell 1981b). The LHS 
scheme is also an extremely efficient sampling design for investigating response surfaces in 
stochastic models (see Seaholm et al. 1988 and Seaholm 1988a and 1988b for a discussion 
of LHS and Monte Carlo models). 


The LHS/PRCC sensitivity analysis can be used for exploring models where the 
outcome variables are time-dependent functions of the input variables (Iman, Helton & 
Campbell1981a; Iman & Helton 1988). To carry out such an analysis, the uncertainty and 
sensitivity analysis could be performed at a series of time steps, rather than only at one 
point. The results would illustrate (i) how prediction precision decreases with time and (ii) 
the effect of time on both the values of the PRCC and their relative rankings. 


In this paper, we have described and applied techniques that were developed for risk 
assessment models. We have illustrated the utility of these techniques for epidemiologists 
and population biologists by analyzing a complex HIV transmission model. We have also 
discussed how these techniques may be used in a variety of ways to investigate further the 
effects of parameter and model uncertainty in other complex models. We suggest that the 
application of these techniques may have considerable utility in the analysis of a wide 
variety of other complex biological and epidemiological models. 


Acknowledgements 


We thank Gerald Friedland, Bob Klein, Diana Hartel, Ellie Schoenbaum, Peter Selwyn at the Montefiore 
Medical Center in the Bronx for data and many helpful discussions on sexual and drug use behavior. I especially 
thank Roy Anderson, Henry Brady. Jake Freimer, Ed Kaplan, Bob May, Angela McLean, Jim Wiley and two 
anonymous reviewers for many useful comments and criticisms on earlier drafts of this manuscript. SMB 
acknowledges gratefully the financial support of the UK Medical Research Council and Zena Stein for 
computing resources. HD acknowledges gratefully the financial support of the Rockefeller Foundation and 
Resources for the Future. We especially thank Nelson Freimer for his superb typing and many helpful 
comments. 


Appendix A 


PRCC are determined for each input variable and each outcome variable in the 
following manner. We describe the technique for one outcome variable. First, the 
outcome vector is added as an additional column in column number K + 1 to the matrix 
of input values. The ordinal numbers representing the rank (1 to N) of each of these 
columns are defined as the set (ru, r2;, ••• , rk;, R;), where i =run number. The average 
rank JL = (1 + N)/2. If two of the input parameters have exactly the same ranking for 
every run, then only one of the parameters should be used in the calculation of PRCC. A 
K + 1 by K + 1 symmetric matrix (C) may now be defined, with elements c;j 


N 


:L (r;, - JL )(rj, - JL) 
t~I 


i, j = 1, 2, ... 'K. 
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For the ci,k+l elements Ri replaces rj1 and rjs· The leading diagonal elements of Care all 
ones. The matrix B is defined as the inverse of C. 


The PRCC ( 'Yiv) between the ith input parameter and the yth outcome variable is defined 
as (Kendall &-Stewart, 1979): 


-bi,K+l 
')'- = -;:::::.===== 


'Y YbubK+l,K+l 


The significance of a nonzero value of 'Yi.v is tested by computing (_v- The distribution of 
this variable approximates a Student's T with N - 2 degrees of freedom: 


tiy = /'iy . 
y 


PRCC are then calculated for the second outcome variable. 
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Resume 


Les modeles d'etude de Ia diffusion du VIH sont devenus tres complexes. Cette complexite etant associee a 
une forte incertitude dans !'estimation des valeurs des parametres d'entree, le comportement de certains de ces 
modeles ne peut etre apprehend€ que par des analyses d'incertitude et de sensibilite. L'analyse d'incertitude 
peut etre utilisee pour etablir Ia variabilite (imprecision de Ia prediction) de Ia variable de sortie qui provient de 
!'incertitude de !'estimation des parametres d'entree. Une analyse de sensibilite peut completer celle 
d'incertitude en identifiant les parametres qui ont une influence maximale sur !'imprecision de Ia prevision (i.e., 
etude de !'impact des modifications des valeurs des parametres d'entree sur Ia valeur de Ia variable de sortie). 
Dans cet article, des analyses d'incertitude et de sensibilite sont decrites et leurs applications sont presentees; les 
deux analyses s'appuient sur Ia methode d'Echantillonnage des Carres Latins (ECL) qui est un protocole 
d'echantillonnage extremement efficace propose par McKay, Conover & Beckman (1979). Les methodes 
presentees dans ce papier n'ont jamais ete appliquees aux modeles deterministes de Ia dynamique de Ia 
diffusion d'une maladie, meme si ces modeles ont de nombreuses caracteristiques en commun avec les modeles 
d'estimation du risque pour lesquelles ces strategies ont ete developpees. L'interet des analyses d'incertitude par 
le ECL et de Ia sensibilite par le ECL/CPR (Echantillonnage des Carres Latins/Correlation Partielle de Rang) 
est mise en evidence par !'analyse d'un modele deterministe complexe de transmission du VIH. 


Mot clefs: Analyse d'incertitude, Analyse de sensibilite, Protocole d'echantillonnage, Modeles mathematiques, 
Epidemiologie. 
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Sensitivity and Uncertainty Analysis, A Case Study


from “Sensitivity and Uncertainty Analysis of Complex Models of Disease Transmission: 
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Introduction

“…simple transmission models can be solved analytically; however, the behavior of the complex models may only be understood by numerical analysis. Uncertainty analyses and sensitivity analyses are necessary to explore the behavior of many of these complex models, because the structural complexity of the models are coupled with a high degree of uncertainty in estimating the values of many of the input parameters.”



“One approach to a sensitivity analysis is to use every value of each parameter …. This analysis has the advantage that the entire parameter space is explored, but this design is extremely time consuming and hence impractical for complex transmission models that contain a multitude of parameters…. More sophisticated and efficient statistical analysis techniques…have been applied to explore the behavior of complex economic, engineering, chemical and physical models.”
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The HIV Transmission Model

“The LHS uncertainty analysis and the LHS/PRCC sensitivity analysis techniques have not previously been applied to deterministic disease transmission models. However, disease transmission models have many characteristics in common with the risk assessment models that these strategies were designed to investigate. The model characteristics may be summarized as follows: (i) the models have many uncertain parameters, (ii) the outcome variables are non-linear functions of the parameters, (iii) the full range of each input parameter needs to be investigated, and (iv) the models are computationally taxing…”



The model:

34 ordinary differential equations

20 input parameters

10 state variables
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Uncertainty Analysis Results

“The LHS uncertainty technique was used to explore the effect of the uncertainty in estimating the values of the input variables on the prediction precision of two outcome variables: the cumulative number of adult and pediatric AIDS cases at the end of thirty years. The empirical frequency distributions for these two outcome variables were directly derived from the results of the uncertainty analysis…”













“This technique enables the degree of prediction imprecision to be quantified, and used as a basis for comparing the expected results (i.e., the models‘ predictions) with the observed results.”
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Sensitivity Analysis Results

“PRCC were used to identify the key input variables that contributed to the prediction imprecision... (T)he uncertainties in estimating the values of three parameters are the most critical in affecting the prediction precision of the future number of adult AIDS cases. ..The results of the sensitivity analysis can be used to focus data collection effort because the analysis identifies which parameters (due to their estimation uncertainty) are important in the prediction precision of adult AIDS cases.”
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Uses/Benefits of a Sensitivity Analysis
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