Pelican Lake SAGD Pilot
Approval 11469B
March 2013 – March 2014 Update

AEROOffices
April 2, 2014.

www.cenovus.com
Disclaimer

This Cenovus Pelican Lake SAGD Pilot March 1, 2013-February 28, 2014 Update ("Update") is prepared and submitted pursuant to regulatory requirements promulgated by the Energy Resources Conservation Board under its Directive 054 dated October 15, 2007. The contents of this Update are not intended to be, and may not be relied upon by any person, company, trust, partnership or other entity ("Person") for the purpose of making any investment decision, including without limitation any decision to purchase, hold or sell any securities of Cenovus Energy Inc. or any of its affiliates ("Cenovus").

Cenovus expressly disclaims, and makes no representation or warranty, express or implied, with respect to any of the information made available in this Update where such information is used by any Person for the purposes of making any investment decision as prohibited by this disclaimer, and none of Cenovus and its affiliates, and their respective officers, directors, employees, agents, advisors and contractors shall have any liability to any Person in respect thereof.
Pelican Lake SAGD Pilot
Introduction and Overview

- Introduction
- Subsurface Issues Related to Resource Evaluation and Recovery
  - Directive 054, Section 3.1.1
- Surface Operations, Compliance, and Issues Not Related to Resource Evaluation and Recovery
  - Directive 054, Section 3.1.2
Pelican Lake SAGD Pilot
Subsurface Issues: Table of Contents

1. Brief Background of the Scheme
2. Geology / Geoscience
3. Drilling and Completions
4. Artificial Lift
5. Instrumentation in Wells
6. Seismic
7. Scheme Performance
8. Future Plans
Brief Background

Subsurface Subsection 1

Pelican Lake SAGD Pilot
Approval 11469B
March 1, 2013 – February 28, 2014 Annual Performance
Illustration of Recovery Process

Subsection 3.1.1 – 1)
Pelican Lake SAGD Pilot
Project Overview

- SAGD Pilot to evaluate large resource base of ~ 5 Billion barrels OBIP
- 100% WI
- Other operations within the region
  - Cenovus and Canadian Natural operate enhanced recovery schemes in the Wabiskaw formation
  - Laricina commercial Demo project (CDP) 5,000 bbls/d approved Oct 2010. with Development in the Grand Rapids ‘A’ to the north
  - Cavalier has submitted a 10,000 bbl/d Grand Rapids ‘A’ In-situ scheme application in November 2012
Pelican Lake SAGD Pilot
March 1, 2013 – February 28, 2014  Project Milestones

- July 2013  - Disposal well drilled
- Aug 2013  - Facility work completed to remove constraints
- Aug 2013  - P01 averaged 70 m3/d oil
- Dec 2013  - Steam chamber core drilled (analyzed January 2014)
- Jan 2014  - 4D seismic shot
- Feb 26 2014 - Disposal well approval issued
Pelican Lake SAGD Pilot
Stratigraphic Correlation

After Jackson, 1983

Cap Rock
Bitumen & Source Water
Wabiskaw Production ~23,000 bbls/day
Disposal Zone

Subsection 3.1.1 – 2)
Pelican Lake SAGD Pilot
Paleogeography - Grand Rapids ‘A’ member

- Depositional environment - prograding shoreface (marine sediments forming shoreline sandstones)
- Very fine to medium grained Quartzose sand with minor feldspar, chert, muscovite and biotites
- Aerially extensive 10m+ thick bar sands

Figure 3.1: Paleogeography of the Notikewin Member, Grand Rapids ‘A’ Member and equivalents.

After Jackson, 1983

Subsection 3.1.1 – 2)
## Pelican Lake SAGD Pilot

**Summary of Reservoir Properties**

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base of Grand Rapids ‘A’</td>
<td>357-363 m Subsea</td>
</tr>
<tr>
<td>Average Gross Thickness</td>
<td>23 m</td>
</tr>
<tr>
<td>Average SAGD Pay Thickness</td>
<td>18 m</td>
</tr>
<tr>
<td>Average Porosity</td>
<td>35 %</td>
</tr>
<tr>
<td>Average Water Saturation</td>
<td>46 % (Gross)</td>
</tr>
<tr>
<td></td>
<td>38 % (SAGD Pay Zone)</td>
</tr>
<tr>
<td>Average Permeability</td>
<td>2.9 D</td>
</tr>
<tr>
<td>OBIP</td>
<td>$8.0 \times 10^6$ m$^3$ (50.3 MMbbls)</td>
</tr>
<tr>
<td>Oil Viscosity</td>
<td>1,000,000 cp+</td>
</tr>
<tr>
<td>Oil Gravity</td>
<td>7.5-8.5 API</td>
</tr>
<tr>
<td>Initial Reservoir Pressure</td>
<td>1200 kPa</td>
</tr>
</tbody>
</table>

Subsection 3.1.1 – 2) a) & b)
Subsection 3.1.1 – 2) c)
Subsection 3.1.1 – 2) d)
Subsection 3.1.1 – 2) d)
Pelican Lake SAGD Pilot
SAGD Base Structure Map

Subsection 3.1.1 – 2) d)
Pelican Lake SAGD Pilot
Type Log

00/05-11-082-23W4/0
ELEV_KB : 609

Subsection 3.1.1 – 2) e)
Pelican Lake SAGD Pilot
26P01/I01 horizontal well paths

Shore-face Deposit

- Depositional environment is ideal for SAGD. Sands are laterally and vertically continuous and predictable.

Bitumen deposit within Regional Grand Rapids ‘A’ Aquifer

- Non saline ground water
- Variability in water saturations within the resource
Pelican Lake SAGD Pilot
26P02/I02 horizontal well paths

Wells 26P02, 26I02

Subsection 3.1.1 – 2) h)
Acquired 15 RADARSAT-2 scenes in 2013—the first sign of change—March 26, 2013.
Less than 4 mm of heave throughout 2013.
Fracture closure pressure = 4.75 MPa
Drilling and Completions

Subsurface Subsection 3

Pelican Lake SAGD Pilot
Approval 11469B
March 1, 2013 – February 28, 2014 Annual Performance Presentation
Pelican Lake SAGD Pilot Well Layout / Location Map

Subsection 3.1.1 – 3)

Temperature
Temperature & Pressure
Ground Water observation
Thermal compliancy observation

Ground water observation wells not illustrated on map:
- 100/04-27-82-22
- 1F1/13-07-82-22
- 16-07-82-22 (camp 1 water source well)
26I01 Completion

Conductor
508.0mm landed at 20.0mKB

Surface Casing
339.7 mm landed at 92.0 mKB

Intermediate Casing
244.5 mm landed at 400.0 mKB

Outer tubing

Inner tubing

Liner Hanger

Liner

Coiled Instrumentation

- Original Completion November 5, 2010

KB Elevation: 609.03 m
Ground Elevation: 604.36 m

Subsection 3.1.1 – 3) b)
• Completion with Quench November 11, 2012
26P01 Downhole Quench
(February 2013 – March 2014)

P01 Downhole Quench

- Quench line installed Nov 11, 2012
- Quench line 1 ¼” coil landed ~ 200 m past the pump intake
- The theory is that by injecting cold fluid past the pump it helps pump efficiency by reducing the saturation conditions at the pump reducing the amount of steam at pump intake
- The quench was used intermittently throughout the year based on pump behavior
- The injection of quench fluid downhole increased pump stability and efficiency by allowing for increase in production
26I02 Completion

Conductor
508.0 mm landed at 24.0 mKB

Surface Casing
339.7 mm landed at 107.0 mKB

Intermediate Casing
244.5 mm landed at 562.00 mKB MD

Outer tubing

Inner tubing

Liner Hanger

Liner

Coiled Instrumentation

KB Elevation: 609.03 m
Ground Elevation: 604.36 m

Subsection 3.1.1 – 3) b)

• Original Completion May 5, 2012
26P02 SAGD Completion (February 2013 – January 2014)

- ESP conversion February 13, 2013

- Conducting
  - 508.0mm landed at 24.0m KB
- Surface Casing
  - 339.7 mm landed at 107.0 m KB
- Intermediate Casing
  - 244.5 mm landed at 593.50 m KB MD
- Bubble Tube
- Production Tubing & ESP
- Scab Hanger & Liner Assembly
- Coiled Instrumentation
26P02 Producer Completion – January 2014

- **Conductor**
  landed at 24.0 mKB

- **Surface Casing**
  landed at 107.00 mKB

- **Intermediate Casing**
  landed at 593.50 mKB MD

- **Production tubing**
  Tubing c/w ESP set at 533.79 mKB MD

- **Bubble Tube**

- **4.5” Vacuum Insulated Tubing Scab Liner**

- **MH Scab Liner Hanger**
  top at 571.97 mKB MD

- **Thermal Liner Hanger**

- **Instrument string**

- **VIT Installed January 17, 2014**

Subsection 3.1.1 – 3) b)
Artificial Lift

Subsurface Subsection 4

Pelican Lake SAGD Pilot
Approval 11469B
March 1, 2013 – February 28, 2014 Annual Performance Presentation
Pelican Lake SAGD Pilot
Artificial Lift

The artificial lift used for the Grand Rapids ‘A’ SAGD Pilot producers are Electric Submersible Pumps (ESP)

- Intake pump pressure 500 – 1,150 kPaa.
- Lift capacity per pump 60-600 m³/d.
- Pump operating temperature limit of 218°C.
Instrumentation in Wells

Subsurface Subsection 5

Pelican Lake SAGD Pilot
Approval 11469B
March 1, 2013 – February 28, 2014 Annual Performance Presentation

www.cenovus.com
Pelican Lake SAGD Pilot
Instrumentation In Wells

SAGD Well Pair 1 Instrumentation

• I01: Gas blanket for injector bottomhole pressures. No downhole temperature measurements.

• P01: Bubble tube for producer bottomhole pressure measurements. Installed 40-point temperature fiber and pressure sensor at the toe in producer in 2014.

SAGD Well Pair 2 Instrumentation

• I02: Gas blanket in annulus for injector bottomhole pressures. Equipped with 40-point temperature fiber and pressure sensor at toe.

• P02: Bubble tube for producer bottomhole pressure measurements. Removed 40-point temperature fiber and pressure sensor at toe. Replaced with 6 thermocouple temperature point string in 2014.

Requirements under subsection 3.1.1 5a – wellbore schematics, 5c and 5d are included in the Appendix.
Pelican Lake SAGD Pilot
Instrumentation In Observation Wells

<table>
<thead>
<tr>
<th>Formation of Observation (Number of Wells)</th>
<th>Temperature only</th>
<th>Pressure Only</th>
<th>Pressure &amp; Temperature</th>
<th>Sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaternary/Tertiary (3)</td>
<td></td>
<td>3</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Viking (1)</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>GDPD ‘A’ (11)</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>GR”B” (4)</td>
<td></td>
<td>4</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

19 water monitoring/observation wells for Pelican Lake SAGD Pilot

Failures in 2013:
- Thermocouples
  - WP01 – 103/5-11-82-23W4 at depths: 246mKB, 242.9 mKB
  - WP02 - 100/16-3-82-23W4
  - WP01 - 102/5-11-82-23W4 Aug 2013 –Feb 2014 surface equipment issues
- Piezometers:
  - WP01 - 103/5-11-82-23W4 at depths: 242.9 mKB, 233.4 mKB, 227.1 mKB, 224 mKB

Resolution:
- February 2014 - Surface Equipment fixed on 102/5-11-82-23W4
- March 2014 - Add thermocouple strings to 103/5-11-82-23W4 & 100/16-3-82-23W4

Requirements under subsection 3.1.1 5a – wellbore schematics, 5c and 5d are included in the Appendix.
Subsection 3.1.1 – 5)

**Pelican Lake SAGD Pilot Instrumentation in Wells**

- **Temperature**
- **Temperature & Pressure**
- **Ground Water observation**
- **Thermal compliancy observation**

**WP01** Equipped with fiber-optic string for temperature monitoring

**WP02** Equipped with 6-point thermocouple string for temperatures

Ground water observation wells not illustrated on map:
- 100/04-27-82-22
- 1F1/13-07-82-22
- 16-07-82-22 (camp 1 water source well)
Pelican Lake SAGD Pilot Seismic Coverage

Purpose: monitor steam chamber growth
- Bin size: 10 m by 10 m
- Baseline 3D was shot on January 2nd, 2011
- First 4D was shot on January 3rd, 2012
- Second 4D was shot in March 2013
- Third 4D was shot in January 2014
- 4D seismic show the areas of steam chamber development and connection to the lean zone
- 2014 being processed
4D Seismic Coverage

SAGD Well Pairs

2011 Seismic Survey Outline

2012 Seismic 4D Lines

2013 & 2014 Seismic 4D Lines

Cenovus_Oil_Sand

Subsection 3.1.1 – 6)
4D seismic between 2013 and 2011 show steam at heel and middle of WP01

- Steam chamber core
- Temp. OB Well

Subsection 3.1.1 – 6)
4D seismic between 2013 and 2012 shows steam at heel of WP02

- Steam chamber at heel is interpreted to be connected to the overlying lean zone
  - 2013 4D seismic analysis shows seismic amplitude throughout the bitumen, transition, and lean zone
- Lean zone pressure (measured in offsetting observation wells) increased several months after WP2 start-up
- Injector pressure is balanced with the overlying lean zone pressure
- Temperature logs in both the Producer and Injector show elevated temperature coinciding with the 4D seismic
Pelican Lake SAGD Historical Production & Injection (July 2011 – March 2014)

- Hot spot development in both Wellpair producers
- Poor conformance
- Damaged scab liner

Actual Pilot performance versus forecasted performance of an equivalent commercial well pair
Well Pair #1
Pelican Lake SAGD Pilot
March 2012 – February 28, 2014 WP01 Performance

Subsection 3.1.1 – 7) a)

Steam injection into 26P01

Steam Injection into 26P01

SAGD Operations

SAGD Operations
Pelican Lake SAGD Pilot
March 1, 2013 – February 28, 2014  WP01 SAGD Performance

Maximum sustained reservoir fluid rate \(\sim 230\text{m}^3/\text{d}\)

254 days on production

Ave. oil rate = 35\text{m}^3/\text{d}

Ave. reservoir fluid rate = 160\text{m}^3/\text{d}

SOR = 4.0

WOR = 3.3
Pelican Lake SAGD Pilot
I01 Temperature Survey

- Target to improve conformance by increasing drawdown capability of mid-section to toe section of well
- Survey was conducted on December 11, 2013. Injector was shut-in for 2 days
Pelican Lake WP01
Thermocouples in Wells

WP01
Equipped with fiber-optic string for temperature monitoring

Subsection 3.1.1 – 5)
Pelican Lake SAGD Pilot
Thermocouple Response 103/12-02

Lateral distance from Observation well to the well pair = 4.0 m

Subsection 3.1.1 – 7)
• Temperature spike at 245m is due to steam injection at producer conductively heating bottom of the pay zone.

Lateral distance from Observation well to the well pair = 4.2 m
Pelican Lake SAGD Pilot
Thermocouple Response 102/05-11

Lateral distance from Observation well to the well pair = 21.4 m

Not working Aug 2013 – Feb 2014 surface equipment issues

Subsection 3.1.1 – 7)
Pelican Lake SAGD Pilot
Thermocouple Response 102/08-10

Lateral distance from Observation well to the well pair = 174 m
Pelican Lake WP01  
March 1, 2013 – February 28, 2014 Milestones

- August 2013  - P01 averaged 70 m3/d oil
- Dec 2013    - HCl job on P01
- March 2014  - Removed quench line, installed ICD/scab liner in P01 with DTS
- January 2014 - P01 recompletion (hole in scab liner)
Pelican Lake SAGD WP01
Key Learnings

• High steam injection pressures combined with high drawdown created steam jetting conditions resulting in a hole in both slotted and scab liner.

• Drawdowns should be maintained below 500 kPa to minimize risk of steam jetting holes in tubing.

• Measurement audit showed small discrepancies in production and injection data. These are currently being resolved.

• P1 downhole quench completion showed positive results. Casing steam production was eliminated and production tubing steam was reduced.

• Temperature limitation of Pelican Lake oil infrastructure was improved from 2012, however full resolution was not achieved due to downhole issues.
Well Pair #2
Pelican Lake SAGD Pilot
August 2012 – February 28, 2014 WP2 Performance

Subsection 3.1.1 – 7)
Pelican Lake SAGD Pilot
March 1, 2013 – February 28, 2014 WP2 Performance

Maximum sustained reservoir fluid rate ~ 110m³/d

226 days on production

Ave. oil rate = 24m³/d

Ave. reservoir fluid rate = 110m³/d

SOR = 5.0

WOR = 3.6
Pelican Lake SAGD Pilot
26I02 & 26P02 Fiber Temperatures

**I02 Temperature**
- February 2013 shut-in
- September 2013 shut-in
- January 2014 shut-in

**P02 Temperature**
- February 2013 shut-in
- September 2013 shut-in
- January 2014 shut-in

Subsection 3.1.1 – 7)
Pelican Lake WP02
Thermocouples in Wells

Subsection 3.1.1 – 5)

Equipped with 6-point thermocouple string for temperatures

WP2

Temperature & Pressure

WP1

WP2
Distance from Observation well to the well pair = 12m

Subsection 3.1.1 – 7)
Pelican Lake SAGD Pilot
Thermocouple Response 102/16-03

Distance from Observation well to the well pair = 2.4m

Subsection 3.1.1 – 7)
Pelican Lake SAGD Pilot
Thermocouple Response 100/09-03

• At 223m natural temperature of lean zone.

Distance from Observation well to the well pair = 9.8m
Pelican Lake WP02
March 1, 2013 – February 28, 2014 Milestones

- August 2013 - P02 HCl cleanout
- January 2014 - Installed insulated tubing in P02
- March 2014 - P02 recompletion (hole in scab liner)
Pelican Lake SAGD WP02
Key Learnings

- Circulation start-up resulted in hot spot formation at the heel of the wellpair
- High steam injection pressures combined with high drawdown failed to improve conformance. Additionally, these conditions created steam jetting resulting in a hole in both slotted and scab liner.
- Drawdowns should be maintained below 500 kPa to minimize risk of steam jetting holes in tubing.
- Recompletion to install insulated tubing Jan 2014 to aid in start-up of P2 toe and improve conformance.
- Temperature limitation of Pelican Lake oil infrastructure constrained emulsion rates.
### Pelican Lake SAGD Pilot Production Summary

**WP01** Cumulative March 1, 2013 to February 28, 2014

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil (m³)</td>
<td>24,405</td>
<td>12,099</td>
</tr>
<tr>
<td>Water (m³)</td>
<td>78,353</td>
<td>39,856</td>
</tr>
<tr>
<td>WOR (m³/m³)</td>
<td>2.85</td>
<td>3.3</td>
</tr>
<tr>
<td>Steam Injection (m³)</td>
<td>128,000</td>
<td>48,981</td>
</tr>
<tr>
<td>SOR (m³/m³)</td>
<td>5.0</td>
<td>4.0</td>
</tr>
<tr>
<td>WSR (m³/m³)</td>
<td>0.62</td>
<td>0.82</td>
</tr>
</tbody>
</table>

**WP02** Cumulative March 1, 2013 to February 28, 2014

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil (m³)</td>
<td>6,226</td>
<td>5,454</td>
</tr>
<tr>
<td>Water (m³)</td>
<td>33,269</td>
<td>19,769</td>
</tr>
<tr>
<td>WOR (m³/m³)</td>
<td>5.34</td>
<td>3.6</td>
</tr>
<tr>
<td>Steam Injection (m³)</td>
<td>62,308</td>
<td>27,572</td>
</tr>
<tr>
<td>SOR (m³/m³)</td>
<td>10.0</td>
<td>5.0</td>
</tr>
<tr>
<td>WSR (m³/m³)</td>
<td>0.53</td>
<td>0.72</td>
</tr>
</tbody>
</table>

- Significant steam losses to lean zone to maintain pressure.
- WP01 steam injection volumes include steam injected into P01
- WP01 water doesn’t includes quench

**All data current to February 28, 2014**

Subsection 3.1.1 – 7) c) ii)
Pelican Lake SAGD Pilot
Lean Zone Observation Wells

Subsection 3.1.1 – 7)
• Lean zone pressure below expected reservoir pressure in 2014
Future Plans

Subsurface Subsection 8

Pelican Lake SAGD Pilot

Approval 11469B

March 1, 2013 – February 28, 2014 Annual Performance
Pelican Lake SAGD Pilot
Future Plans

- March 2014: install ICDs in P01 to restrict hot-spot steam production
- Possible recompletions for I01 and I02 to improve conformance
- 3rd well pair being considered for 2015 to evaluate improved SAGD start-up, completion and facility integration
3.1.2 Surface Operations, Compliance and Issues Not related to Resource Evaluation and Recovery

Pelican Lake SAGD Pilot
Approval 11469B
March 1, 2013 – February 28, 2014 Annual Performance Presentation
Pelican Lake SAGD Pilot
Surface Operations: Table of Contents

1. Facilities
2. Facilities Performance
3. Measurement and Reporting
4. Water production, injection and Uses
5. Sulphur Production
6. Environmental Issues
7. Compliance Confirmation
8. Future Plans
Facilities

Surface Subsection 1

Pelican Lake SAGD Pilot
Approval 11469B
March 1, 2013 – February 28, 2014 Annual Performance Presentation
Pelican Lake SAGD Pilot – Current Site Plan

Subsection 3.1.2 – 1)
Subsection 3.1.2 – 1)
Pelican Lake SAGD Pilot - Facilities Modifications

- Casing gas heat exchanger installed and commissioned
- Added emulsion quench line water tie in and Pad 9 water tie in for cooling, to lift production constraints
- ESP Harmonics improved pump/motor performance (avoided shutdowns)
- Water Disposal Well/Water Source Well Tie-in
- Service change to the Heat Exchanger Shell & Tube
- Added in aerial cooler to increase cooling ability for casing gas produced prior to knockout tank
- Added building louver to allow venting, replaced emergency shutdown valve to allow gas flow to pilot (safety improvement & reduced shutdowns)
- Increased P300AB discharge line & heat traced
- Quench water to 26P01 annulus removed
Pelican Lake SAGD Pilot Plant Performance

- Emulsion pipeline to battery temperature limit
  - Limited to 55°C.
  - Wabiskaw produced water used to lower Pad 26 emulsion temperatures. Produced water temperature has increased from 20 to 40°C over the past 2 years.
  - Service change to the Heat Exchanger Shell & Tube – Reverse emulsion and BFW to test improved efficiency and aid in emulsion out pipeline cooling
  - Production from both WP01 and WP02 constraint reduced by installing pad 9 quench to emulsion line out
Measurement and Reporting

Surface Subsection 2

Pelican Lake SAGD Pilot
Approval 11469B
March 1, 2013 – February 28, 2014 Annual Performance Presentation
Updated MARP submitted February 28th, 2014

• 2013 Amendments
  – Updated Casing gas meter calculations to reflect current standard SAGD gas metering by using temperature and pressure from casing gas meters. The partial pressure theory is used to calculate steam and gas being produced from each well.

• Auditing MARP results
Pelican Lake SAGD Pilot
MARP Schematic

Subsection 3.1.2 – 3)
Water Production, Injection and uses

Surface Subsection 3

Pelican Lake SAGD Pilot
Approval 11469B
March 1, 2013 – February 28, 2014 Annual Performance Presentation
Pelican Lake SAGD Pilot
Water Source Wells

- Two source water wells
  1. 1F1/01-15-082-23W4 in the Grand Rapids ‘B’ formation
  2. 1F1/13-07-082-22W4 in the Grand Rapids ‘B’ formation

- No Brackish water wells
Pelican Lake SAGD Pilot
Source Water Well Rates

Subsection 3.1.2 – 4)
Water Treatment Technology

Surface Subsection 4

Pelican Lake SAGD Pilot
Approval 11469B
March 1, 2013 – February 28, 2014 Annual Performance Presentation
Pelican Lake SAGD Pilot
Water Treatment Technology

- Media Filtering
- Primary Strong Acid Cation (SAC)
- Secondary SAC polisher
- Source water for brine regeneration
Water, Landfill waste and waste disposal wells

Surface Subsection 5

Pelican Lake SAGD Pilot
Approval 11469B
March 1, 2013 – February 28, 2014 Annual Performance Presentation

www.cenovus.com
Pelican Lake SAGD Pilot

Disposal Well

- Disposal well 105/12-11-082-23W4 located at Pad 26 – Abandoned July 2013
- New Disposal well 102/9-10-82-23W4 drilled and cased to Nisku Fm, July 2013
- Fluids trucked from site during 2013 until new Disposal approval received February 26, 2014
Pelican Lake SAGD Pilot
Disposal Well Rates
Sulphur Production

Surface Subsection 5

Pelican Lake SAGD Pilot
Approval 11469B
March 1, 2013 – February 28, 2014 Annual Performance Presentation

www.cenovus.com
Sulphur production

Quarterly sulphur emissions and facility monthly sulphur balance not generated due to following:

• Casing gas samples before the V-910 (knock-out drum) show 181ppm tested in late March 2013, however samples after March have shown less than 10ppm.
• Casing gas samples after V-910 have 10ppm or less.
Summary of Environmental Issues

Surface Subsection 6

Pelican Lake SAGD Pilot
Approval 11469B
March 1, 2013 – February 28, 2014 Annual Performance Presentation
Pelican Lake SAGD Pilot Environment Update

- November 2013:
  - Incinerator temperatures dropped below 500 °C
  - Less than 24 hours

- February 12, 2014:
  - Self-Disclosed Emulsion spill from E-200B exchanger
  - Found gate valve gasket leaking
  - 5 m3 of emulsion spilled on ground
  - 4 days to clean-up
Compliance Confirmation

Surface Subsection 7

Pelican Lake SAGD Pilot
Approval 11469B
March 1, 2013 – February 28, 2014 Annual Performance Presentation
Pelican Lake SAGD Pilot Compliance Confirmation

- No regulatory compliance issues
Future Plans

Surface Subsection 9

Pelican Lake SAGD Pilot
Approval 11469B
March 1, 2013 – February 28, 2014 Annual Performance Presentation
Pelican Lake SAGD Pilot
Future Plans

2014

• New oil cut shack to be constructed and installed in 2014
  – Audit improved data analysis/ measurement

2015

• Considering 3\textsuperscript{rd} wellpair will require no additional surface disturbance
Appendix

Pelican Lake SAGD Pilot
Approval 11469B
March 1, 2013 – February 28, 2014 Annual Performance Presentation
Pelican Lake SAGD Pilot
Instrumentation In Observation Wells

<table>
<thead>
<tr>
<th>Formation of Observation (Number of Wells)</th>
<th>Temperature only</th>
<th>Pressure Only</th>
<th>Pressure &amp; Temperature</th>
<th>Sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaternary/Tertiary (3)</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Viking (1)</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>GR”A” (11)</td>
<td></td>
<td>3</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>GR”B” (4)</td>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

19 water monitoring/observation wells for Pelican Lake SAGD Pilot
# Pelican Lake SAGD Pilot

## SAGD Observation Wells

### WELL PAIR 1 OBSERVATION WELLS

<table>
<thead>
<tr>
<th>UWI</th>
<th>Temperature</th>
<th>Pressure</th>
<th>Distance to WP1 Toe (m)</th>
<th>Lateral Distance to WP1 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>102/05-11-082-23W4/00</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102/13-02-082-23W4/00</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103/12-02-082-23W4/00</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102/08-10-082-23W4/00</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103/05-11-082-23W4/00</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103/06-11-082-23W4/00</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### WELL PAIR 2 OBSERVATION WELLS (Temperature and Pressure)

<table>
<thead>
<tr>
<th>UWI</th>
<th>Distance to WP2 Toe (m)</th>
<th>Lateral Distance to WP2 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100/01-10-082-23W4/00</td>
<td>940</td>
<td>12.0</td>
</tr>
<tr>
<td>102/16-03-082-23W4/00</td>
<td>530</td>
<td>2.4</td>
</tr>
<tr>
<td>100/09-03-082-23W4/00</td>
<td>175</td>
<td>9.8</td>
</tr>
</tbody>
</table>
## Pelican Lake SAGD Pilot
### Groundwater Observation Wells

<table>
<thead>
<tr>
<th>UWI</th>
<th>Perf. Interval TVD (m)</th>
<th>Zone</th>
<th>Lateral Difference from well pair (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>102/03-11-082-23W4/00</td>
<td>228-230</td>
<td>GR A</td>
<td>408 E</td>
</tr>
<tr>
<td>103/12-11-082-23W4/00</td>
<td>196-198</td>
<td>VIKING</td>
<td>468 N</td>
</tr>
<tr>
<td>100/09-10-082-23W4/00</td>
<td>257-259</td>
<td>GR B</td>
<td>252 N</td>
</tr>
<tr>
<td></td>
<td>266-270</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>276-280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100/08-10-082-23W4/00</td>
<td>254-256</td>
<td>GR B</td>
<td>179 W</td>
</tr>
<tr>
<td></td>
<td>263-267</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>276-280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103/13-02-082-23W4/00</td>
<td>246-248</td>
<td>GR B</td>
<td>~40 E</td>
</tr>
<tr>
<td></td>
<td>256-258</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>273-277</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100/04-11-082-23W4/00</td>
<td>253-255</td>
<td>GR B</td>
<td>~190 E</td>
</tr>
<tr>
<td></td>
<td>263-267</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>277-281</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100/04-27-082-22W4/00</td>
<td>197-202</td>
<td>Tertiary</td>
<td>~9825 NE to the toe</td>
</tr>
<tr>
<td>100/16-03-82-23W4/00</td>
<td>NA</td>
<td>GR A</td>
<td>2.4 W</td>
</tr>
<tr>
<td>1F2/13-07-082-22W4/00</td>
<td>140.7 – 183.0</td>
<td>Quat/Tert</td>
<td>~3940 NE to the toe</td>
</tr>
<tr>
<td>16-07-082-22W4</td>
<td>112.2 – 116.7</td>
<td>Quat</td>
<td>~4890 NE to the toe</td>
</tr>
</tbody>
</table>
Appendix: Pelican Lake SAGD Pilot Observation Wellbore Schematic

ECA ECOG A8 BRINT 8-10-82-23

100/08-10-082-23W4  LSD 8-10-82-23W4M

Conductor:
Landed at 20 m KB / 244.5mm

Intermediate Casing:
139.7 mm, 25.30 kg/m, K-55
Landed at 342.5 mKB
Cemented to surface with Thermal Cement 2.0m3 of returns

Secondary Intermediate Casing:
88.9 mm, 13.84 kg/m, J-55
Landed at 327.26 mKB
Cemented to surface with Thermal Cement 6.1m3 of returns

Tubing String:
31.8mm, 1.697kg/m, Galvanized Steel
Landed at 193.21 mKB
ESP Pump - 193.21-194.21mKB (Pressure/Temperature sensor for fluid level calculation @ 193.75mKB)

Perforations:
254-256mKB
263-267 mKB
276-280 mKB

PBTD Cement Top in Secondary Intermediate Casing @ 326.9 mKB

Intended Purpose:
Pressure (Fluid Level), Temperature, Water quality monitoring of Grand Rapids B aquifer
Appendix: Pelican Lake SAGD Pilot Observation Wellbore Schematic

ECA ECOG A9 BRINT 9-10-82-23

100/09-10-082-23W4  LSD 9-10-82-23W4M

KB= 608.9 mKB  GRD= 605.1 mKB  PBTD = 308.4 mKB

Conductor:
Landed at 20 m KB / 244.5mm

Intermediate Casing:
139.7 mm , 25.30 kg/m , K-55
Landed at 337.0 mKB
Cemented to surface with Thermal Cement 2.0m3 of returns

Secondary Intermediate Casing:
88.9 mm , 13.84 kg/m , J-55
Landed at 321.30 mKB
Cemented to surface with Thermal Cement 2.0m3 of returns

Tubing String:
31.8mm, 1.697kg/m, Galvanized Steel
Landed at 193.21mKB
ESP Pump - 193.21-196.78mKB (Pressure/Temperature sensor for fluid level calculation @ 196.32mKB)

Perforations:
257-259mKB
266-270 mKB
276-280 mKB

PBTD Cement Top in Secondary Intermediate Casing @ 308.4 mKB

Intended Purpose:
Pressure (Fluid Level), Temperature, Water quality monitoring of Grand Rapids B aquifer
Appendix: Pelican Lake SAGD Pilot Observation Wellbore Schematic

CVE BRINT 4-11-82-23

100/04-11-082-23W4   LSD 4-11-82-23W4M

Conductor:
Landed at 20 m KB / 406.4mm

Surface Casing:
177.8 mm, 25.30 kg/m, H-40
Landed at 99.5 mKB
Cemented to surface with Thermal Cement 1.0m3 of returns

Intermediate Casing:
114.3 mm, 17.26 kg/m, L-80
Landed at 335.9 mKB
Cemented to surface with Thermal Cement 4.0m3 of returns

Tubing String:
31.8mm, 1.697kg/m, Galvanized Steel
Landed at 194.35mKB
ESP Pump - 194.35 - 195.35mKB (Pressure/Temperature sensor for fluid level calculation @ 193.89mKB)

Perforations:
253-255 mKB
263-267 mKB
277-281 mKB

Intended Purpose:
Pressure (Fluid Level), Temperature, Water quality monitoring of Grand Rapids B aquifer
Appendix: Pelican Lake SAGD Pilot Observation Wellbore Schematic

CVE 2C13 BRINT 13-2-82-23

103/13-02-082-23W4  LSD 13-2-82-23W4M

KB= 601.2 mKB
GRD= 596.9 mKBPBD = 328.0 mKB

Conductor:
Landed at 20 m KB / 406.4mm

Surface Casing:
177.8 mm, 25.30 kg/m, H-40
Landed at 86.25 mKB
Cemented to surface with Thermal Cement 1.5m3 of returns

Intermediate Casing:
114.3 mm, 17.26 kg/m, L-80
Landed at 328.0 mKB
Cemented to surface with Thermal Cement 4.0m3 of returns

Tubing String:
31.8mm, 1.697kg/m, Galvanized Steel
Landed at 194.05mKB
ESP Pump - 194.05 - 195.05mKB (Pressure/Temperature sensor for fluid level calculation @ 193.77mKB)

Perforations:
246-248 mKB
256-258 mKB
273-277 mKB

Intended Purpose:
Pressure (Fluid Level), Temperature, Water quality monitoring of Grand Rapids B aquifer
Conductor:
Landed at 20 m KB / 244.5mm

Intermediate Casing:
139.7 mm, 25.30 kg/m, K-55
Landed at 345.0 mKB
Cemented to surface with Thermal Cement 2.0m3 of returns

Secondary Intermediate Casing:
88.9 mm, 13.84 kg/m, J-55
Landed at 329.66 mKB
Cemented to surface with Thermal Cement 2.0m3 of returns

Tubing String:
31.8mm, 1.697kg/m, Galvanized Steel
Landed at 149.1mKB
ESP Pump - 149.1-150.0mKB (Pressure/Temperature sensor for fluid level calculation @ 149.5mKB)

Perforations:
228-230mKB

PBTD Cement Top in Secondary Intermediate Casing @ 326.0 mKB

Intended Purpose:
Pressure (Fluid Level), Temperature, Water quality monitoring of Grand Rapids A aquifer
Appendix: Pelican Lake SAGD Pilot Observation Wellbore Schematic

CVE C12 BRINT 12-11-82-23

103/12-11-082-23W4  LSD 12-11-82-23W4M

KB = 606.3 mKB
GRD = 602.3 mKBPBTD = 335.0 mKB

Conductor:
Landed at 22 m KB / 244.5mm

Intermediate Casing:
114.3 mm, 17.26 kg/m, L-80
Landed at 335.0 mKB
Cemented to surface with Thermal Cement 2.0m3 of returns

Tubing String:
31.8mm, 1.697kg/m, Galvanized Steel
Landed at 150.0mKB
ESP Pump - 150.0 - 151.0mKB (Pressure/Temperature sensor for fluid level calculation @ 150.4mKB)

Perforations:
196-198 mKB

Intended Purpose:
Pressure (Fluid Level), Temperature, Water quality monitoring of Viking aquifer
Observation Wellbore Schematic

**ECA ECOG B3 BRINT 4-27-82-22**

**100/04-27-082-22W4**  **LSD 4-27-82-22W4M**

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Surface Casing:</strong></td>
<td>177.8 mm, 25.30 kg/m, H-40 Landed at 166.0 mKB</td>
</tr>
<tr>
<td><strong>Intermediate Casing:</strong></td>
<td>114.3 mm, 22.471 kg/m, L-80 Landed at 341.0 mKB Cemented to surface with Thermal Cement 2.0m3 of returns</td>
</tr>
<tr>
<td><strong>Tubing String:</strong></td>
<td>33.4mm, 2.53kg/m, C-75 Galvanized Steel Landed at 172.5mKB ESP Pump - 173.5mKB (Pressure/Temperature sensor for fluid level calculation @ 172.5mKB)</td>
</tr>
<tr>
<td><strong>Perforations:</strong></td>
<td>197.0-202.0 mKB</td>
</tr>
<tr>
<td><strong>Intended Purpose:</strong></td>
<td>Pressure (Fluid Level), Temperature, Water quality monitoring of Tertiary aquifer</td>
</tr>
</tbody>
</table>
Appendix: Pelican Lake SAGD Pilot Observation Wellbore Schematic

CVE WS2 BRINT 13-7-82-22

1F2/13-07-082-22W4  LSD 13-7-82-22W4M

Conductor:
Landed at 20 m KB / 406.4mm

Intermediate Casing:
219.1 mm, 35.72 kg/m, J-55
Landed at 152.0mKB
Cemented to surface with Thermal Cement 2.0m3 of returns

Tubing String:
88.9mm, 13.84kg/m, J-55
Landed at 140.0mKB
PCP landed @ 126.4mKB (Pressure/Temperature sensor for fluid level calculation @ 97.0mKB)

Liner:
139.7mm, 29.48kg/m, J-55
0.381mm slot size (15 thou)
Set depth 140.69 - 183 mKB (open hole from 183 - 191 mKB)

Intended Purpose:
Pressure (Fluid Level), Temperature, Water quality monitoring of Quaternary/Tertiary aquifer (well pumping consistently as it provides fresh water for current Wabiskaw polymer flood in the area)
Appendix: Pelican Lake SAGD Pilot Observation Wellbore Schematic

2003 Camp Water Supply Well No. 16-07

NE-07-082-22W4  LSD 16-7-82-22W4M

PBTM = 117.0 mKB

Intermediate Casing:
152.4 mm, Plastic (PVC)
Landed at 112.2 mKB
Bentonite Chips/Tablets to 106.68 mKB

Tubing String:
31.75mm, Plastic (PVC)
Landed at 140.0 mKB
ESP landed @ 100.6 mKB (Pressure/Temperature sensor for fluid level calculation @ 95.0 mKB)

Liner:
152.4mm, Stainless Steel
0.381mm slot size (15 thou)
Set depth 112.2 - 116.7 mKB

Intended Purpose:
Pressure (Fluid Level), Temperature, Water quality monitoring of Quaternary aquifer (well pumping consistently as it provides fresh water Pelican Lake Camp)
Appendix: Pelican Lake SAGD Pilot Observation Wellbore Schematic

** CVE BRINT 8-10-82-23 **

** 102/08-10-082-23W4  LSD 8-10-82-23W4M **

**Conductor:**
- Landed at 22 m KB / 406.4mm

**Surface Casing:**
- 219.1 mm, 35.72 kg/m, J-55
- Landed at 69.5 m KB
- Cemented to surface with Thermal Cement 2.0m3 of returns

**Intermediate Casing:**
- 114.3 mm, 17.26 kg/m, L-80
- Landed at 333.85 m KB
- Cemented to surface with Thermal Cement 4.5m3 of returns

**Sensors:**
- 8 Piezometers Cemented to Casing
- Pressure/Temperature Sensor Set Depths:
  - 225.0 m KB
  - 228.2 m KB
  - 231.3 m KB
  - 234.4 m KB (Pressure sensor failed)
  - 237.6 m KB (Pressure sensor failed)
  - 240.7 m KB
  - 243.8 m KB
  - 247.0 m KB

**Intended Purpose:**
- Pressure and Temperature through Grand Rapids A steam chamber
Appendix: Pelican Lake SAGD Pilot Observation Wellbore Schematic

CVE 2B BRINT 5-11-82-23

103/05-11-082-23W4  LSD 5-11-82-23W4M

Conductor:
Landed at 20 mKB / 406.4mm

Surface Casing:
219.1 mm, 35.72 kg/m, J-55
Landed at 98.70 mKB
Cemented to surface with Thermal Cement 3.0m3 of returns

Intermediate Casing:
114.3 mm, 17.26 kg/m, L-80
Landed at 332.15 mKB
Cemented to surface with Thermal Cement 4.0m3 of returns

Sensors:
8 Piezometers (Pressure) Cemented to Casing

Pressure Measurement Depths:
224.0 mKB (Pressure sensor failed)
227.1 mKB (Pressure sensor failed)
230.3 mKB
233.4 mKB
236.6 mKB
239.7 mKB
242.9 mKB
246.0 mKB (Pressure sensor failed)

Intended Purpose:
Pressure and Temperature through Grand Rapids A steam chamber
Appendix: Pelican Lake SAGD Pilot Observation Wellbore Schematic

CVE B6 BRINT 6-11-82-23

103/06-11-082-23W4   LSD 6-11-82-23W4M

Conductor:
Landed at 25 m KB / 244.5mm

Intermediate Casing:
177.8 mm , 38.69 kg/m, L-80
Landed at 339.5 m KB
Cemented to surface with Thermal Cement 2.0m3 of returns

Tubing String:
73.0 mm, 9.67 kg/m, J-55
Landed at 241.92mKB
Packer to isolate zones landed at 236.49mKB
Pressure/Temperature Sensor banded to tubing at 208.2mKB (above packer)
Pressure/Temperature Sensor deployed through tubing landed at 241.6mKB (below packer)

Perforations:
228-230 mKB
244-246 mKB

Intended Purpose:
Pressure (Fluid Level) and Temperature monitoring of Grand Rapids A zone
Appendix: Pelican Lake SAGD Pilot Observation Wellbore Schematic

ECA ECOG B5 BRINT 5-11-82-23

102/05-11-082-23W4  LSD 5-11-82-23W4M

KB= 606.9 mKB
GRD= 603.1 mKBPBTD = 312.7 mKB

Conductor:
Landed at 20 mKB / 244.5mm

Intermediate Casing:
139.7 mm , 25.30 kg/m , K-55
Landed at 339.5 mKB
Cemented to surface with Thermal Cement 2.0m3 of returns

Secondary Intermediate Casing:
88.9 mm , 13.84 kg/m , J-55
Landed at 317.9 mKB
Cemented to surface with Thermal Cement 1.5m3 of returns

Thermocouple String:
WIKA 20 Point Thermocouple
Landed 214.0 - 252.0 mKB
Each Thermocouple is 2 m apart along the landing depth length

PBTD Cement Top in Secondary Intermediate Casing @ 312.7 mKB

Intended Purpose:
Temperature monitoring of Grand Rapids A steam chamber

• Note:
Thermocouples failed August 2013 to February 2014
Conductor:
Landed at 23 mKB / 244.5mm

Intermediate Casing:
177.8 mm, 38.69 kg/m, L-80
Landed at 328.0 mKB
Cemented to surface with Thermal Cement 2.0m3 of returns

Thermocouple String:
WIKA 20 Point Thermocouple
Landed 209.0 - 247.0 mKB
Each Thermocouple is 2 m apart along the landing depth length

Intended Purpose:
Temperature monitoring of Grand Rapids A steam chamber
Appendix: Pelican Lake SAGD Pilot Observation Wellbore Schematic

CVE BRINTNELL 12-2-82-23

103/12-02-082-23W4  LSD 12-2-82-23W4M

Conductor:
Landed at 24.2 m KB / 406.4mm

Surface Casing:
177.8 mm, 25.30 kg/m, H-40
Landed at 86.25 mKB
Cemented to surface with Thermal Cement

Intermediate Casing:
114.3 mm, 17.26 kg/m, L-80
Landed at 324.0 mKB
Cemented to surface with Thermal Cement 1.0m³ of returns

Thermocouple String:
WIKA 20 Point Thermocouple
Landed 209.0 - 247.0 mKB
Each Thermocouple is 2 m apart along the landing depth length

Intended Purpose:
Temperature monitoring of Grand Rapids A steam chamber
Appendix: Pelican Lake SAGD Pilot Observation Wellbore Schematic

CVE BRINT 1-10-82-23

100/01-10-082-23W4  LSD 1-10-82-23W4M

KB = 607.1 mKB
GRD = 603.0 mKB
PBTD = 334.0 mKB

Surface Casing:
219.1 mm, 35.72 kg/m, J-55
Landed at 334 mKB
Cemented to surface with Thermal Cement 4.0m3 of returns

Intermediate Casing:
114.3 mm, 17.26 kg/m, L-80
Landed at 334 mKB
Cemented to surface with Thermal Cement 3.0m3 of returns

Sensors:
8 Piezometers Cemented to Casing
Pressure/Temperature Sensor Set Depths:
221.1 mKB
225.8 mKB
228.8 mKB
231.9 mKB
235.0 mKB
237.7 mKB
240.5 mKB
243.0 mKB

Intended Purpose:
Pressure and Temperature through Grand Rapids A steam chamber

www.cenovus.com
Appendix: Pelican Lake SAGD Pilot Observation Wellbore Schematic

CVE BRINT 16-3-82-23

102/16-03-082-23W4   LSD 16-3-82-23W4M

KB= 602.0 mKB
GRD= 597.9 mKB
PBT= 329.0 mKB

Surface Casing:
219.1 mm, 35.72 kg/m, J-55
Landed at 329.0 mKB
Cemented to surface with Thermal Cement 3.0m3 of returns

Intermediate Casing:
114.3 mm, 17.26 kg/m, L-80
Landed at 329.0 mKB
Cemented to surface with Thermal Cement 3.0m3 of returns

Sensors:
8 Piezometers Cemented to Casing
Pressure/Temperature Sensor Set Depths:
- 214.6 mKB
- 217.2 mKB
- 221.0 mKB
- 223.0 mKB
- 227.0 mKB
- 228.8 mKB
- 232.0 mKB
- 235.2 mKB

Intended Purpose:
Pressure and Temperature through Grand Rapids A steam chamber
Appendix: Pelican Lake SAGD Pilot Observation Wellbore Schematic

CVE BRINT 9-3-82-23

100/09-03-082-23W4    LSD 9-3-82-23W4M

KB = 598.5 mKB
GRD = 594.4 mKB
PBTM = 325.0 mKB

Surface Casing:
219.1 mm, 35.72 kg/m, J-55
Landed at 119.0 mKB
Cemented to surface with Thermal Cement 3.0m3 of returns

Intermediate Casing:
114.3 mm, 17.26 kg/m, L-80
Landed at 325.0 mKB
Cemented to surface with Thermal Cement 3.0m3 of returns

Sensors:
8 Piezometers Cemented to Casing
Pressure/Temperature Sensor Set Depths:
211.1 mKB
213.6 mKB
218.1 mKB
221.9 mKB
226.3 mKB
228.9 mKB
232.9 mKB
236.1 mKB

Intended Purpose:
Pressure and Temperature through Grand Rapids A steam chamber
### CVE BRINT 16-3-82-23

<table>
<thead>
<tr>
<th><strong>100/16-03-082-23W4</strong></th>
<th><strong>LSD 16-3-82-23W4M</strong></th>
</tr>
</thead>
</table>

**Surface Casing:**
- 219.1 mm, 35.72 kg/m, J-55
- Landed at 105 mKB
- Cemented to surface with Thermal Cement

**Intermediate Casing:**
- 139.7 mm, 23.067 kg/m, J-55
- Landed at 432.2 mKB
- Cemented to surface with Thermal Cement 3.0m3 of returns

**Sensors:**
- 10 points Acoustic fibre and 34 Thermocouples (Temperature) Hang off
- Temperature Sensor Set Depths:
  - 217.0 mKB - 250 mKB (Temperature every meter)
- Acoustic Fibre Sensor Set Depths:
  - 0.0 mKB - 250 mKB (Acoustic point every 25 meter)

**Intended Purpose:**
- Acoustic Fibre through out wellbore to measure noise and Temperature through Grand Rapids A steam chamber - Non thermal casing with thermal cement monitoring wellbore

---

**Real Time Pressure & Temperature gauge at Wellhead**

- KB = 602.0 mKB
- GRD = 598.1 mKB
- PBTD = 432.2 mKB