D-054 Performance Presentation
Poplar Creek ET-DSP™ Step Three Field Test
Experimental Scheme Approval No. 10457H
Location 09-13-090-10W4
January 1, 2015 to December 31, 2013

Bruce C. W. McGee, CEO
Peter Johanson, CFO
E-T Energy Ltd.

An Integrated Technology Strategy
Focusing on Next Steps

February 26, 2016
LEGAL NOTICE TO SHAREHOLDER

Forward-looking Statements / Reserves Estimates Information in this corporate presentation contains forward-looking statements. Such statements are generally identifiable by the terminology used, such as, but not limited to “plan,” “anticipate,” “intend,” “expect,” “estimate,” “budget,” or other similar wording. Forward-looking statements include, but are not limited to, references to future capital and other expenditures, drilling plans, construction activities, the submission of development plans, seismic activity, oil and gas production levels and the source of growth thereof, results of exploration activities and dates by which certain areas may be developed or may come on-stream, production and operating costs, reserves and resources estimates, reserve life, bitumen upgrading and export capacity and environmental matters.

Investors are cautioned that the assumptions used in the preparation of such numbers may prove to be incorrect. These forward-looking statements are subject to numerous known and unknown risks, uncertainties, and other factors, many of which are beyond the control of E-T Energy Limited, which may cause actual results, levels of activity and achievements to differ materially than those expressed or implied by such statements. These risks include, but are not limited to; general economic, market and business conditions; industry capacity; competitive action by other companies; fluctuations in commodity pricing; cost, availability and supply of oil sands equipment and services; and general risks associated with the oil and gas industry. Industry related risks include, but are not limited to; operational and geological risks in exploration, development and production; timing delays or changes in plans; actions taken and decisions made by government authorities; risks associated with the uncertainty of reserve estimates; reservoir performance and natural well decline rates; and health and safety risks including, without limitation, blowouts and spills. Capital expenditures may be affected by cost pressures associated with new capital projects, including but not limited to; labour and material supply; project management; drilling rig rates and availability; new oil sands facility equipment cost and availability; and seismic costs. The risks outlined above should not be construed as exhaustive. Investors are cautioned not to place reliance on any forward-looking information.

E-T Energy Ltd. undertakes no obligation to update or revise forward-looking statements, whether as a result of new information, future events or otherwise. The forward-looking statements contained in this presentation are expressly qualified by this cautionary statement. All dollar amounts are in Canadian dollars unless otherwise stated. All bitumen reserve estimates are in barrels unless otherwise stated.
Presentation Outline

1 Background
 • The Oil Sands
 • The Recovery Process
 • Progress
 • Next Steps

2 Step 3 Subsurface Operations
 • Site Location
 • Geology
 • Subsurface Completions
 • Operations Summary

3 Key Learnings

4 Simulation Study
 • Revised Model
 • Revised Simulation Results

5 Next Steps
The Oil Sands

<table>
<thead>
<tr>
<th>Depth Range</th>
<th>Area</th>
<th>Thickness</th>
<th>Porosity</th>
<th>Sw</th>
<th>Bitumen In Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>150-75 m</td>
<td>ERCB ST-98 Parameters</td>
<td>487,501</td>
<td>18.6</td>
<td>29.0</td>
<td>27.0</td>
</tr>
<tr>
<td></td>
<td>McDaniel Parameters</td>
<td>487,501</td>
<td>18.6</td>
<td>31.0</td>
<td>25.0</td>
</tr>
<tr>
<td>150-50 m</td>
<td>ERCB ST-98 Parameters</td>
<td>612,235</td>
<td>19.3</td>
<td>29.0</td>
<td>27.0</td>
</tr>
<tr>
<td></td>
<td>McDaniel Parameters</td>
<td>612,235</td>
<td>19.3</td>
<td>31.0</td>
<td>25.0</td>
</tr>
</tbody>
</table>

The Resource

1. **Too deep to mine - too shallow** for SAGD
2. Quality resource towards the surface
3. Near infrastructure

Mining?

ET-DSP™ can replace mining.

The technology was originally developed to replace mining.

Deeper?

Depths to 250 m are achievable with current materials technology.
The ET-DSP™ Process

The ET-DSP™ technology combines the features of electro-thermal heating with heat transfer by convection. Here is how it works:

Main Features of the Process

1. Electrical current flows from electrode to electrode through the connate water within the formation, heating the bitumen especially near the electrodes.

2. A negative pressure gradient is established to pull heated and mobilized fluids to conventional production wells.

3. The introduction of the convective heat transfer by injection of water into the ends of the electrodes results in a 5-fold increase in reservoir heating.
At the Pore Level

More Features of the Process

1. The conduction path is the connate water thus heating less water and more oil resulting in improved thermal efficiency.

2. The charge distribution at the oil-water boundary alters the IFT resulting in little sand production and minor emulsions.

3. Boiling and cooling (water to vapour phase changes) in the pore space improves the recovery factor.

4. Electrical heating of clays creates permeable paths for oil to flow to the production wells.
Field Level

Heating the Formation

1. Each equilateral triangle of electrodes defines an element with the electrodes spaced on 16 m centres.
2. Two elements create a diamond shape with extraction wells located in the middle of the diamond.
3. Extraction wells are part of the neutral system with ground currents providing heating.
4. Non-potable water is injected into the electrodes at low rates (0.3 gpm on average) and low pressure.
5. Production commences in 60 to 90 days from the start of heating.
Production Profile

Features

1. One year production cycle
2. Peak temperature coincides with minimum oil viscosity
3. Bitumen can be produced at lower temperatures than in SAGD
4. Model published in McGee [1]
Commercial Development

Development Features

1. Annual temporal & moving footprint
2. Full restoration in less than ten years
3. Surface equipment is long life and reused

A Lot of Wells
10,000 bopd requires 1,000+ wells drilled annually

A Small Footprint
10,000 bopd is 33 ha
Drilling Drilling Drilling

A fit for purpose drilling rig and operation is essential for enabling commercial operations.

Drilling performance needs to be greater than three wells per day - these metrics have been achieved with conventional methods, a fit for purpose rig can achieve six wells per day.

Seven drilling rigs, drilling an average of three wells per day are sufficient to execute a 50,000 bopd commercial project.

Capital Cost: $740 per bopd
PDS Units vs Steam Generation / Water Treatment
Electrical Energy

Grid Power

1. Energy price and power supply in Alberta varies hourly [2].
2. Power can be controlled to take advantage of off-peak hourly power pricing with a potential energy cost savings of up to 40 percent.
3. Available off-peak power from the Alberta pool is sufficient to support a large commercial project.

Energy Requirements

1. Energy: 75 kWh per barrel
2. Power: $3\frac{1}{2}$ kW per bopd
3. Average Cost: $7.39 per barrel
Water Production / Injection

Water Usage

1. Provides voidage replacement
2. 1 m³ per m³ of produced bitumen
3. Water quality not an issue, produced water is re-injected
4. Minimal water treatment is required
5. Average Cost: $0.13 per barrel
Scheme Progress

Background

1. Received initial EUB approval Jan 30 2006, #10457A, as an experimental scheme.
2. Confidential status from Jan 2006 to Jan 31 2011.
4. Finished construction, begin heating and production for Step 3, in the 2012 calendar year.

E-T Energy Technology Development Timeline:

<table>
<thead>
<tr>
<th>Year</th>
<th>Purpose</th>
<th>Result</th>
<th>Key Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>XT1</td>
<td>Proof of concept on half-spacing of 8 metres to demonstrate in-reservoir performance</td>
<td>Progressive cavity pumps are key to successful production; electrode completion redesign</td>
</tr>
<tr>
<td>2007</td>
<td>T2</td>
<td>Test new electrode drilling and completion technique; test screens in production wells; test 16 metre spacing</td>
<td>Eliminate metal in electrode wellocore; reduce cable handling at installation; fine-tune extraction well completion</td>
</tr>
<tr>
<td>2008</td>
<td>XT3</td>
<td>Test 18 metre spacing of electrode wells</td>
<td>Heating occurred, but at slower rate</td>
</tr>
<tr>
<td>2009</td>
<td>XT1-A</td>
<td>4 X-well pattern designed to test 16-m spacing and new design of electrodes</td>
<td>Revise connector design; All future completions to provide casing protection to top of formation</td>
</tr>
<tr>
<td>2010</td>
<td>XT1-A Mini</td>
<td>Failure of downhole cable connectors and hose failure</td>
<td>No failures</td>
</tr>
<tr>
<td>2011</td>
<td>CCEMC Scope</td>
<td>Re-activation of a portion of XT1-A using mini-electrodes to gather reservoir and performance data</td>
<td>Reliable method to rejuvenate an electrode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test revised completion methodology for casing and conduit protection, with small spacing to accelerate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nine X-well pattern for definitive demonstration of recovery factor and EOR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,000 bbl pilot as demonstration of commercial-scale operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Begin heating this week</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Long lead items in procurement</td>
<td></td>
</tr>
</tbody>
</table>
E-T Energy Progress to Date

Summary

1. **Invest $80 million** to date on delineating lease and piloting.
2. **287 million barrels** contingent recoverable resource from independent resource evaluator.
3. Demonstrate **sand free** bitumen production from 2007 onwards in four consecutive field tests.
4. Operate Step 3 to establish **commercial** technical and economic inputs.
5. Continue with **Research and Development** on subsurface electrode connection and cable delivery system.
6. Execute a larger field test to **demonstrate commerciality**.
CCC and the Oil Sands

Bitumen

1. Revenue measured at a **discount** to WTI: 0.6 to 0.8 times WTI.
2. **Requires** the addition of expensive diluent for transportation.
3. **Depends** on pipeline access, e.g. Keystone or Northern Gateway to open markets for optimal pricing.

Diesel

1. Revenue measured at a **premium** to WTI: 1.8 to 1.9 times WTI.
2. **No** diluent needed.
3. Diesel sold to **local markets**. Does not need Keystone or Northern Gateway pipelines to realize optimal pricing.
Location: 09-13-090-10-W4M

[Map showing the location of the site with labels for Suncor, Ivanhoe, Exxon, Larkin, Grizzly, FORT McMURRAY, Value Creation, Cenovus, Athabasca, Alberta Oil Sands, Koch, Imperial, and a test site labeled E-T.]
Step 3 CCEMC/Total Field Test

- Stop power to electrodes on March 31, 2013.
- Continue production operations to May 11, 2013.
- Continue data monitoring to June 30, 2013.
- Demob Tank Farm, Battery, Glycol Heater, Office Trailer, Storage Tents in October, 2013.
- Complete Demob by December, 2013.
- Abandon wells/clear site; completed October 2014.
- Site Reclamation remains to be done.
The Extraction Well

2. 70% of the equipment is reusable.
4. Surface Casing with Thermal Cement.
5. Downhole Temperature Monitoring.
6. Hydraulic Drive Unit.
The Electrode Well

- Drill large diameter wellbore with a fit for purpose drilling rig,
- Three electrodes in each E-Well,
- Bundle of cables and hoses to surface (most of it reusable),
- Surface Casing with Thermal Cement,
- Each E-Well abandoned after use,
- Electrode wellhead (recoverable), and
- Completed with surface casing.
Step 3 Operations Summary

Phase I (All Electrodes On)
- Begin heating to electrodes: Jan 31, 2012
- Begin bitumen extraction: June 25, 2012
- Days of heating prior to extraction: 146 days
- Turn off the Upper electrodes: July 4, 2012
- Days of heating to all electrodes: 155 days
- Cumulative energy to all electrodes: 3,400,000 [kW•hr] after 155 days
- Cumulative energy to Upper electrodes: 1,010,000 [kW•hr] after 155 days
- Average electrode power to July 4, 2012: 13.25 [kW]

Phase II (Upper Electrodes Off)
- Days of heating: 270 days
- Cumulative energy during Phase II: 2,441,000 [kW•hr] after 270 days
- Average electrode power: 8.19 [kW]
- Shut off power to all the electrodes: March 31, 2013

Step 3 Totals
- Days of operations: 425 days
- Stop bitumen extraction: May 11, 2013
- Terminate data monitoring: June 30, 2013
- Cumulative bitumen extraction: 621.64 [m³]
- Cumulative energy to Middle & Lower electrodes: 4,831,000 [kW•hr] after 425 days
- Cumulative energy to all electrodes: 5,841,000 [kW•hr] after 425 days
Key Learnings

1. Electrode reliability key to effective reservoir heating
2. Critical production aspects: (a) significance of high water ratio and (b) even vertical heat distribution within electrode well.
3. No significant sand production, even at high fluid production rates.
4. Able to effective control and minimize heat to water zone.
5. Chemical injection increased recovery but need to quantify how much.
6. Advanced understanding of reservoir drive mechanisms in a low-pressure environment.
Revised Simulation Study

Step 3 Boundary

Performance Expectations

1. Match the geology.
2. Match the average input energy.
3. Based on the known geology, what are the performance expectations.

Legend
- 23 E-Wells
- 14 Producers
- 6 Ob Wells
- 3 Fully Enclosed
- 3 Electrodes / E-Well
- Ob Wells are cored

Actual and Design Energy Curves
Simulation Model
Reservoir Quality
Numerical Evaluation of Production Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Simulation Results</th>
<th>Field Test Results</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I (All Electrodes On)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase I Electrical Energy</td>
<td>1,065,243,000</td>
<td>3,334,194</td>
<td>[GJ]</td>
</tr>
<tr>
<td>Duration</td>
<td>295,901</td>
<td>155 days</td>
<td>[kW•hr]</td>
</tr>
<tr>
<td>Average Electrode Power</td>
<td>13.26</td>
<td>13.25</td>
<td>[kW]</td>
</tr>
<tr>
<td>Current Scaling Factor</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase II (Upper Electrodes Off)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase I + II Electrical Energy</td>
<td>1,926,802,000</td>
<td></td>
<td>[GJ]</td>
</tr>
<tr>
<td>Phase II Electrical Energy</td>
<td>861,559,000</td>
<td>5,802,316</td>
<td>[GJ]</td>
</tr>
<tr>
<td>Duration</td>
<td>239,322</td>
<td>270 days</td>
<td>[kW•hr]</td>
</tr>
<tr>
<td>Average Electrode Power</td>
<td>8.21</td>
<td>8.19</td>
<td>[kW]</td>
</tr>
<tr>
<td>Current Scaling Factor</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cumulative production per well</td>
<td>4.14</td>
<td>44.40</td>
<td>[m³]</td>
</tr>
<tr>
<td>Step 3 EOR</td>
<td>13,237.55</td>
<td>1,235.55</td>
<td>[kW•hr/bbl]</td>
</tr>
<tr>
<td>Phase II EOR</td>
<td>13,237.55</td>
<td>1,235.55</td>
<td>[kW•hr/bbl]</td>
</tr>
<tr>
<td>Phase II SORₚ</td>
<td>98.84</td>
<td>9.23</td>
<td>[-]</td>
</tr>
</tbody>
</table>
Revised Simulation Study Results

The performance of ET-DSP™ within the Step 3 reservoir encountered exceeded our revised expectations for production and energy use.

Unlike steam injection technologies, it was possible to focus the heating into just the higher quality zones within the reservoir and provided the opportunity for improved energy efficiency.
CCC Due Diligence

Due Diligence Video

Insert Video
Vision for Next Steps

50,000 BOPD Diesel System

ET-DSP™ System
- Power Capacity: 125 MW
- PDS Units: 138 Total
- 54,229 E-Wells
- 48,248 X-Wells
- 7 Drilling Rigs
- Electro-thermal Energy: 50 kW•hr per barrel of produced bitumen, 50,000 bopd peak
- Diluent: Water

Bitumen Reservoir
- Poplar Creek
- Φ = 0.33
- So = 85%
- OOIP = 606,943,315 bbls
- ReO = 335,265,673 bbls
- ReD = 52,599,408 bbls
- Acres Developed: 2,760

Central Processing Facility
- Ambient Pressure
- 85 °C Peak Temperature
- Batch Processing
- Separation Tanks
- 30% Heat Losses
- Peak: 58,858 bepd
- Bitumen + Diluent at 85 °C
- Augmented Methane Gas TDB
- Petroleum Coke TDB
- Gas Supply
- Peak Rate: 8,628 Mscf/day
- Ave Energy: 173,608 BTU/bbl
- 51 kW•hr/bbl

Cold Catalytic Cracking and Desulphurization
- Ambient Pressure
- 450 °C Peak Temperature
- Batch Processing
- Separation Tanks
- 20% Heat Losses
- Peak: 50,915 bdpd

Diesel

1. CCC cost is 5% of traditional upgrading capital costs.

ET-DSP™ System
- 2. ET-DSP™ is 6 times more energy efficient than SAGD

CCC Supply
- InjCCC = 7,944,613 bbls
- 1 bbl / 42.20 bbl of Oil

Diluent Supply
- InjD = 70,132,544 bbls
- 1 bbl / 7.35 bbl of OOIP

No potable water needed, water free upgrading process, minimal GHG emissions.
Cold Catalytic Cracking (CCC)

1. **Chemical catalyst** is used in a single stage pyrolysis process at 450 °C and atmospheric pressure to convert bitumen into diesel, methane gas, and a petroleum coke solid.

2. The path to diesel from the bitumen is a chemical reaction with the catalyst. Very little energy is needed in the process: 51 kWh per barrel.

3. Not a drop of water is used in the process. Energy is provided by natural gas augmented with the by-product methane gas.

4. The process only takes 3 to 4 hours for the bitumen to convert to diesel and its by-products.

CCC Process

- 450 °C
- \(\sim 101.325 \text{ kPa} \)
- No water
- 51 kW•hr per bbl
- 3 ½ hours

50 bopd prototype facility in Beijing
The Upgrading Challenge

Challenges

1. The capital cost for upgrading, i.e., the Sturgeon Refinery presently under construction, is $160,000 per flowing barrel of oil compared to $8,000 for the Bayshore CCC Process.

2. The level of complexity of an upgrader is high. It uses hydrogen at high pressure / vacuums and temperatures, with multiple input and outputs. The CCC Process is basically a heated tank farm operating at atmospheric pressure and half the temperature.

3. Not a drop of water is used in the process. Energy is provided by natural gas augmented with the by-product methane gas.

4. The environmental footprint of an upgrader is substantial and brings into play a huge regulatory approval procedure. The CCC process does not use a drop of water and has relatively low GHG emissions.
Small Scale Testing 2014/2015

Proven Technology

50 bpd batch CCC Upgrader in Beijing Lab Facility has run all types of bitumen and heavy oils from Alberta, USA, Europe and Middle East â no failures have been experienced.

72 hour batch test on Heavy Oil in May 2014:
- 83% (volume) recovery of Diesel,
- 7.3% (mass) Gas Yield,
- 19.4% (mass) Petroleum Coke Yield.
Analytic Model for Estimating the Production of Bitumen From the ET-DSP™ Process With Economics and Comparisons to SAGD, Submission to Canadian Energy Technology and Innovation, accepted for print, 2012

[Alberta Power Pool, July, 2012]
Daily Power Pool Price, (http://ets.aeso.ca/)
Alberta Electric System Operator, 2012