2018 Performance Presentation

Devon Canada Corporation
Jackfish SAGD Project

Commercial Scheme Approval No. 10097 (as amended)
October 2018
This document contains forward-looking information prepared and submitted pursuant to the Alberta Energy Regulator’s requirements and is not intended to be relied upon for the purpose of making investment decisions, including without limitation, to purchase, hold or sell any securities of Devon Energy Corporation. Additional information regarding Devon Energy Corporation is available at www.devonenergy.com
Subsurface Operations
Project Background

Section 3.1.1-1
Brief Background of Scheme

3.1.1-1

- Jackfish 1, 2, and 3 utilize steam-assisted gravity drainage (SAGD) to recover bitumen from the McMurray formation
- Located 150 km south of Fort McMurray
- Jackfish 1 scheme approval granted in August 2006; first steam was August 2007
- Jackfish 2 scheme approval granted in August 2008; first steam was May 2011
- Amalgamation of Jackfish approvals (including Jackfish 3) in November 2011; first steam was July 2014
Brief Background of Scheme

3.1.1-1
Brief Background of Scheme

3.1.1-1

<table>
<thead>
<tr>
<th>Asset</th>
<th>Number of Operating Pads</th>
<th>Number of Operating Well Pairs</th>
<th>Upcoming Pads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jackfish 1</td>
<td>11</td>
<td>78</td>
<td>EX</td>
</tr>
<tr>
<td>Jackfish 2</td>
<td>8</td>
<td>60</td>
<td>QQ</td>
</tr>
<tr>
<td>Jackfish 3</td>
<td>6</td>
<td>53</td>
<td>III</td>
</tr>
<tr>
<td>TOTAL</td>
<td>25</td>
<td>191</td>
<td>-</td>
</tr>
</tbody>
</table>
Geology

Section 3.1.1-2
Gross Rock Volume (GRV)

- Characterizes the complete package accessible through SAGD
- Defined by:
 - $S_o > 50\%$
 - $V_{sh} < 40\%$
 - can contain up to 3m continuous non-reservoir
 - encompasses all brecciated intervals
- V_{sh} and S_o are standard petrophysical curves calculated from gamma ray, resistivity, and porosity logs, and correlated to image logs and core data
Geology

Jackfish Net Continuous Bitumen Pay Definition

3.1.1-2a

Net Continuous Bitumen (NCB)*

- More conservative definition used to define continuous bitumen pay, used for pad and well pair planning

- Defined by:
 - \(V_{sh} < 40\% \)
 - can contain up to 1m continuous non-reservoir
 - excludes breccias that do not meet \(V_{sh} \) cutoff
 - base defined by producer (actual or estimated) elevation

- \(V_{sh} \) and \(S_o \) are standard petrophysical curves calculated from gamma ray, resistivity, and porosity logs, and correlated to image logs and core data

*Prior submissions defined net pay based on a net-to-gross ratio calculation, not a net continuous bitumen pay zone
Geology

Jackfish Volumetrics and Average Reservoir Properties

3.1.1-2b

<table>
<thead>
<tr>
<th>Property</th>
<th>Area (Ha)</th>
<th>OBIP ($10^6 m^3$)</th>
<th>Avg. GRV thickness (m)*</th>
<th>Avg. Oil Saturation (So)*</th>
<th>Avg. Porosity (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Area</td>
<td>7,668</td>
<td>367.3</td>
<td>22.1</td>
<td>67.2</td>
<td>32.9</td>
</tr>
<tr>
<td>Development Area</td>
<td>5,445</td>
<td>325.0</td>
<td>27.0</td>
<td>67.4</td>
<td>32.9</td>
</tr>
</tbody>
</table>

*Prior submissions calculated OBIP and average parameters only within the net pay portion, not for the complete GRV interval

<table>
<thead>
<tr>
<th>Property</th>
<th>Jackfish 1</th>
<th>Jackfish 2</th>
<th>Jackfish 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBIP ($10^6 m^3$)**</td>
<td>75.3</td>
<td>81.3</td>
<td>67.5</td>
</tr>
<tr>
<td>Avg. Reservoir Depth (mTVD)</td>
<td>400</td>
<td>459</td>
<td>428</td>
</tr>
<tr>
<td>Avg. Reservoir Depth (mASL)</td>
<td>202</td>
<td>202</td>
<td>202</td>
</tr>
<tr>
<td>Avg. Original Reservoir Pressure (kPa)</td>
<td>2,700 @ scheme startup</td>
<td>2,700 @ scheme startup</td>
<td>2,700 @ scheme startup</td>
</tr>
<tr>
<td>Avg. Reservoir Temp. (°C)</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Avg. Kh (md)</td>
<td>5,000</td>
<td>3,000</td>
<td>4,000</td>
</tr>
<tr>
<td>Avg. Kv (md)</td>
<td>2,000</td>
<td>1,200</td>
<td>1,500</td>
</tr>
<tr>
<td>Avg. Phi (%)</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Avg. Bitumen Viscosity (Cp)</td>
<td>1,000,000+</td>
<td>1,000,000+</td>
<td>1,000,000+</td>
</tr>
<tr>
<td>Original Bottom Water Pressure (kPa)</td>
<td>2,300</td>
<td>2,300</td>
<td>2,300</td>
</tr>
</tbody>
</table>

**Total for all producing, drilled, and planned pads
Geology

Jackfish Gross Rock Volume Pay Thickness

3.1.1-2c
Geology

Prior submissions defined net pay based on a net-to-gross ratio calculation, not a net continuous bitumen pay zone
Geology

Jackfish McMurray Water Contact to Paleozoic Isopach

3.1.1-2c
Geology

Jackfish Top Structure of Gross Rock Volume

3.1.1-2d
Geology

Jackfish Base Structure of Gross Rock Volume

3.1.1-2d
Geology

Jackfish 1 Representative Well Log

3.1.1-2e
Geology

Jackfish 2 Representative Well Log

3.1.1-2e
Geology

Jackfish 3 Representative Well Log

3.1.1-2e
Geology

Jackfish 2018 Drilling Program and Cored Wells

3.1.1-2f

Special Core Analysis
No special core analysis conducted on core from the 2018 drilling program.

Project Area
2017-2018 Wells: 26
2017-2018 Core: 12
Total Well Count: 459
Total Core: 208
No new implications on ultimate recovery at this point in time.
Geology

Jackfish 1 Representative Structural Cross-section

3.1.1-2i
Geology

3.1.1-2i

B

AA01-29-075-07W4/0

00/10-28-075-07W4/0

00/09-28-075-07W4/0

280m

AA08-28-075-07W4/0

1530m

GR

MD

RESM

DPLB

DPLN_SO

Cheyenne Fm. Caprock
Waskesiu Mbr. SG
McMurray Fm
GRV Top
NCB Top
NCB Base
GRV Base
Devonian Unconformity
Geology

Jackfish 3 Representative Structural Cross-section

3.1.1-2i
Interpretation complete on 2015 mini frac program:
- Lowest Wabiskaw shale fracture closure gradient of 14.1kPa/m at AA/10-31
- Fracture closure gradient of 18.6kPa/m from the 2011 mini frac program was utilized for the earlier MOP approval
- Category 2 Amendment to adjust the Jackfish MOP submitted in Q3 2016 and subsequently approved
Seismic

Historical Surveys

3.1.1-6a

- No seismic was acquired in 2018
- Historically, seismic acquisition is extensive, totaling 21.7 km²
Seismic

2017 4D Results

3.1.1-6a

- Time delay is in direct relation to steam chamber development
- Colour gradient represents Paleozoic reflector time change from 2003 (baseline) to 2017
Jackfish 1
Accumulated Displacement 2008-2018

3.1.1-2k

<table>
<thead>
<tr>
<th>Cumulative Ground Motion [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 150</td>
</tr>
<tr>
<td>100 to 150</td>
</tr>
<tr>
<td>50 to 100</td>
</tr>
<tr>
<td>35 to 50</td>
</tr>
<tr>
<td>20 to 35</td>
</tr>
<tr>
<td>20 to -20</td>
</tr>
<tr>
<td>-20 to -35</td>
</tr>
<tr>
<td>-35 to -50</td>
</tr>
<tr>
<td>-50 to -100</td>
</tr>
<tr>
<td>-100 to -150</td>
</tr>
<tr>
<td>< -150</td>
</tr>
</tbody>
</table>

TS-1 Max 190.0mm
TS-2 Max 113.6mm
TS-3 Max 140.8mm
Jackfish 1

Comparing Accumulated Displacement 2017 to 2018

3.1.1-2k
Jackfish 2
Accumulated Displacement 2011-2018

3.1.1-2k

TS-1 Max 117.9mm

TS-2 Max 55.0mm

TS-3 Max 87.0mm
Jackfish 2

Comparing Accumulated Displacement 2017 to 2018

3.1.1-2k
Jackfish 3
Accumulated Displacement 2014-2018

3.1.1-2k

Cumulative Ground Motion [mm]

> 150
100 to 150
50 to 100
35 to 50
20 to 35
20 to -20
-20 to -35
-35 to -50
-50 to -100
-100 to -150
< -150

TS - 1 Max
66.4mm

TS - 2 Max
61.5mm
Jackfish 3

Comparing Accumulated Displacement 2017 to 2018

3.1.1-2k

Cumulative Ground Motion [mm]
- > 150
- 100 to 150
- 50 to 100
- 25 to 50
- 20 to 25
- 10 to 20
- 5 to 10
- 0 to 5
- 0 to -5
- -5 to -10
- -10 to -15
- < -15

11 Apr 2014 to 30 June 2017

11 Apr 2014 to 05 Sept 2018
Drilling and Completions

Section 3.1.1-3
Operating SAGD Horizontal Wells
• **Jackfish 1:** 78 well pairs on eleven pads (horizontal sections are 790 – 1,200m)
• **Jackfish 2:** 60 well pairs on eight pads (horizontal sections are 790 – 1,200m)
• **Jackfish 3:** 53 well pairs on six pads (horizontal sections are 720 – 1,200m)

Observation Wells
• 65 active SAGD observation wells (two to three wells per operating pad)
• 21 regional multi-zone monitoring wells equipped with piezometers

Service Wells
• Six Grand Rapids brackish source water wells
• Two McMurray brackish source water wells
• 14 water disposal wells (Class 1b)
 • 12 active wells
 • 1 inactive well (102/12-05-076-06W4)
 • 1 suspended well (102/03-22-075-06W4)
3.1.1-3a

Existing Pads

- Pad A, B, C, D, E, G, H, I, O: Seven well pairs per pad
- Pad F: Ten well pairs
- Pad R: Six well pairs
 - Steam on three wellpairs Q2 2018
- Two observation wells per pad (heel and toe)
3.1.1-3a

Existing Pads

- Pad AA, BB, CC, DD, and KK: Seven well pairs per pad
- Pad OO and PP: Eight well pairs per pad
- Pad FF: Nine well pairs
- Pad QQ: Ten well pairs, planned for steam Q4 2018
- Two observation wells per pad (heel and toe), three wells at Pad FF
3.1.1-3a

Existing Pads

- Pad J and EE: Seven well pairs per pad
- Pad VV and K: Ten well pairs per pad
- Pad RR: Nine well pairs
- Pad EEE: Ten well pairs, five operating
- Pad III: eight well pairs, planned for steam Q1 2019
Drilling and Completions

Inter-well Spacing

3.1.1-3a

• Standard lateral inter-well spacing at Jackfish is 80m

• Currently drilled pads that differ from the standard are:
 • Pad VV: Spacing of 60m
 • Pad F: Spacing of 60m at the heels fanning to 90m at the toes
 • Pad O: Spacing of 75m at the heels fanning to 90m at the toes
 • Pad R: Spacing varies from 71 to 90m due to boundary restrictions
 • Pad III: Spacing of 80m at the heels fanning to 90m at the toes
• Shiftable steam subs utilized on several injection wells
 – Majority of new wells have a steam sub installed on the long injection string to improve steam distribution

406.4 mm (16”) surface casing

298.5 mm (11 ¾”) intermediate casing

Short and long tubing are from 88.9 to 114.3 mm (3 ½” to 4 ½”)

25.4 mm (1”) coil tubing instrument string with thermocouples and a conduit to pump down fiber optics

219.1 mm (8 5/₈”) slotted liner
Drilling and Completions

Typical Gas Lift Production Well Schematic

- Inflow Control Devices (ICDs) are trialed on select wells
 - Goal is to gain better understanding of this technology in SAGD environment
 - Devices promote production through uniform inflow

- 406.4 mm (16”) surface casing
- 298.5 mm (11 ¾”) intermediate casing
- 31.8 mm (1 ¼”) lift gas coils

Short and long tubing are from 88.9 to 114.3 mm (3 ½” to 4 ½”)

- 25.4 mm (1”) coil tubing instrument string with thermocouples and a conduit to pump down fiber optics
- 219.1 mm (8 5/8”) slotted liner or wire wrap screen
Drilling and Completions

Typical ESP Production Well Schematic

3.1.1-3c

Surface Casing Point

88.9 mm Production Tubing

Electrical Cable for ESP

52.4 mm Guide Tubing

25.4 mm Instrumentation Coiled Tubing (ICT)
- 8 Thermocouples Spaced Evenly in Lateral
- 6.4mm Capillary Loop (Optional Fibre)

High Temperature ESP
Bottom: 884.1mKB, 418.2mVD

ICP: 697.0 mKB
416.3 mVD

Guide String TD: 1251.0 mKB

DSP: 689.7 mKB

Liner TD: 1712.0 mKB

4x3/4 Holes: 618.0 mKB
414.0 mVD
Drilling and Completions

Inflow Control Devices (ICDs)

3.1.1-3c

• Tubing-deployed systems on wells CC1P, DD2P, DD7P, OO1P, OO8P
 • Installed successfully via service rig

• Liner-deployed systems on wells RR2P, RR6P, QQ(1,3,5,7,9)P, III3P, III5P
 • Installed successfully via drilling rig

• Key learnings to date:
 • Actual pressure drops in original ICDs different than design. Incorporated lab test data in recent deployments and pressure drop to date is within expected design range.
 • Observed well production improvements range from 0 to 100%, uplift sustainability is being evaluated
 • Able to operate wells at lower subcool with positive impact on temperature conformance
Wire Wrapped Screens

3.1.1-3c

• Wire wrapped screens are the producer sand control standard for all future pads at Jackfish

• Expected benefits of wire wrapped screens:
 • Reduced liner pressure drop
 • Increased open flow area
 • Mechanical strength
 • Sand control

• First implementation at Jackfish 1 was at Pad F
 • Successful start-up in 2016
Well Integrity Summary

• There were no wellhead or intermediate casing failures at any of the Jackfish Thermal wells since the last Directive 054 update.

• As per Devon’s Well Integrity Management System (WIMS), annual SCVF/GM surveys are conducted on injection and production wells
 • Also, annual wellhead preventative maintenance program is executed on all thermal wells

• Devon reports findings from these surveys to AER through its DDS system as per ID 2003-01.
 • Issues identified are managed accordingly through communication and approval with AER

• Devon implemented a Surface Casing Coating program as of December 2015.
 • Producers at Pads C, E and AA were inspected in 2018 – 5 corrosion issues were identified and repaired (external corrosion on surface casings)
Well Integrity Summary

• Devon is fully compliant with AER regarding reporting, repairing wells with wellbore integrity issues

• No suspended or abandoned thermal wells in Devon Jackfish Operations as of November 2018.

• Initiatives for 2019:
 – Evaluate impact of casing grade on intermediate casing failures
 – VIT pilot on Pad-MM (Monitor SCVF/GM in this pad to see impact of VIT on SCVF/GM)
Artificial Lift

Section 3.1.1-4
Artificial Lift

3.1.1-4a, b

- Combination of Gas lift and ESP utilized for artificial lift at Jackfish District

- Gas lift continues to be an effective lift strategy for Jackfish operating conditions
 - Typical producer operating pressure above 1,800 kPag
 - Ability to handle over 1,000 m³/day emulsion flow
 - No operating temperature limitation

- ESP use has expanded from single well (B3P) in 2015 to Full pad install (Pad O) in 2018
 - ESP Wells (B3P, F10P, O1P-O7P
 - R1-R6P (following circulation)
 - Plan to continue to deploy ESPs as deemed necessary
Instrumentation

Section 3.1.1-5
Instrumentation in Wells

SAGD Injection and Producer Wells

3.1.1-5b

- 25.4 mm (1”) coil tubing instrument string with four to eight evenly spaced thermocouples and a conduit to pump down fiber optics
- Fiber optics currently in 39 wells on Pads I, J, CC, DD, KK, FF, and RR
Instrumentation in Wells

Injector Downhole Pressure Monitoring

3.1.1-5b

As of September 2017 all injector wells use annulus gas pressure measurement (AGPM) with the exception of NCG injection wells.

For Typical Injector Wells:
- Utilizing our fuel gas source at the pad to inject a small amount of gas into the annulus space of the tubing and casing to create a bubble tube affect
 - BHP = surface pressure + methane hydrostatic

For NCG Injector Wells:
- Calculate downhole pressure based on surface steam injection pressures on short and long tubing strings
 - BHP = steam injection surface pressure – frictional losses
- Calculate downhole pressure based on surface annulus NCG gas injection pressure and accounting for frictional losses
 - BHP = NCG gas injection surface pressure – frictional losses
- Conduct a NCG injection step rate test periodically to ensure accurate friction losses
- Using thermocouples / fiber optics temperature data to convert downhole live steam temperature from T_{sat} to P_{sat}
Instrumentation in Wells

Producer Downhole Pressure Monitoring

3.1.1-5b

As of September 2017 all gas lift producer wells use annulus gas pressure measurement (AGPM). ESP wells use a bubble tube or a downhole sensor.

For Gas Lift Producer Wells:

- Using annulus gas pressure measurement with periodic blanket gas purges to verify pressures
- Option to use concentric open-ended lift gas (LG) coiled tubing to calculate down hole pressure
 - BHP = LG surface pressure – frictional losses + static head
 - Frictional losses are correlated/calculated by performing numerous gas lift step rate tests

For ESP Producer Wells:

- Use guide string that is installed in well for instrument coil as a bubble tube, gas discharge is above the ESP
- B3P and F10P have sensors in the ESP assembly
Instrumentation in Wells

Annulus Gas Pressure Measurement (AGPM) Update

• Utilizing our fuel gas source at the pad a small amount of gas is injected into the annulus space of the tubing and casing to create a bubble tube affect,

$$BHP = \text{surface pressure} + \text{methane hydrostatic}$$

• Benefits of AGPM:
 • Low rate dry gas injected into annular space gives reduced friction loss inaccuracies
 • All gas returns up the short production tubing string
 • Constant injection ensures no liquid level build up in the annulus space
Devin - Internal

SAGD Observation Wells

Jackfish 1, 2, and 3 SAGD observation wells contain:

- 20 points thermocouples (25 points in more recently drilled wells), spaced above, below, and within pay interval
- Two to four pressure sensors spaced above, below, and within pay interval

![Diagram showing instrumentation in wells](image-url)
Instrumentation in Wells

Regional Monitoring Well Locations

3.1.1-5b
Instrumentation in Wells

Regional Multi-zone Monitoring Wells

Monitoring wells cover areas of Jackfish 1, 2, and 3

Twenty-one wells

- 00/07-32-75-6W4 (5 piezometers)
- F1/08-28-75-6W4 (4 piezometers)
- F1/09-14-75-6W4 (4 piezometers)
- F1/12-31-75-6W4 (4 piezometers)
- F1/10-22-75-6W4 (5 piezometers)
- F1/04-26-75-7W4 (5 piezometers)
- F1/06-28-75-7W4 (5 piezometers)
- F1/15-19-75-6W4 (5 piezometers)
- F1/09-24-75-7W4 (5 piezometers)
- F1/14-25-75-6W4 (5 piezometers)
- F1/05-12-75-6W4 (5 piezometers)
- F1/09-22-75-7W4 (4 piezometers)
- 02/12-23-75-7W4 (4 piezometers)*
- 02/01-35-75-7W4 (3 piezometers)
- 00/15-07-75-5W4 (4 piezometers)
- 00/07-22-75-7W4 (2 piezometers)
- 00/03-15-75-6W4 (3 piezometers) **
- 02/09-33-75-6W4 (4 piezometers)
- 00/04-30-75-7W4 (3 piezometers)
- 00/01-19-75-6W4 (3 piezometers) **
- AA/11-30-75-6W4 (5 piezometers)

* Perf with a Level Logger
** Perf for water sampling
Instrumentation in Wells

Regional Multi-Zone Monitoring Wells

3.1.1-5b

<table>
<thead>
<tr>
<th>UWI</th>
<th>Rig Release</th>
<th>Quaternary</th>
<th>Colorado Group</th>
<th>Grand Rapids</th>
<th>Clearwater</th>
<th>Wabiskaw</th>
<th>McMurray Bitumen</th>
<th>Basal McMurray Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>00/07-32-075-06W4</td>
<td>2004/03/11</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>F1/08-28-075-06W4</td>
<td>2006/03/11</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>F1/09-14-075-06W4</td>
<td>2006/03/12</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>F1/12-31-075-06W4</td>
<td>2007/01/24</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>F1/10-22-075-06W4</td>
<td>2007/01/29</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>F1/04-26-075-07W4</td>
<td>2007/02/19</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>F1/06-28-075-07W4</td>
<td>2007/02/26</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>F1/15-19-075-06W4</td>
<td>2007/03/05</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>F1/09-24-075-07W4</td>
<td>2008/02/27</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>F1/14-25-075-06W4</td>
<td>2008/03/03</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>F1/05-12-075-06W4</td>
<td>2008/03/06</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>F1/09-22-075-07W4*</td>
<td>2008/03/07</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>02/12-23-075-07W4</td>
<td>2012/03/05</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02/01-35-075-07W4</td>
<td>2012/03/06</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00/15-07-075-05W4</td>
<td>2012/03/09</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>02/09-33-075-06W4</td>
<td>2013/01/10</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00/03-15-075-06W4</td>
<td>2013/01/18</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA/11-30-075-06W4</td>
<td>2013/01/18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00/01-19-075-06W4</td>
<td>2013/02/17</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00/04-30-075-07W4</td>
<td>2013/03/03</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00/07-22-075-07W4</td>
<td>2013/03/13</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scheme Performance

Section 3.1.1 - 7
3.1.1-7a

- Well pad performance forecasts generated using Jackfish and industry analogues; validated with numerical simulation and analytical methods

- Facility service factors based on historical data, future plans, and quantified risks
Scheme Performance

Jackfish 1 Project Life Plot

3.1.1-7a

- **Flow Rate (m³/d)**
- **SOR (m³/m³), Gas Injection (e3m³/d), Well Pairs**

- **Daily Steam Injection**
- **Daily Oil Production**
- **Daily Water Production**
- **Daily Gas Injection**
- **ISOR**
- **CSOR**
- **Well Pairs**

Key events:
- Pad F start
- Pad G start
- Turn around
- Turn around
- Turn around
Scheme Performance

Jackfish 2 Project Life Plot

3.1.1-7a

Flow Rate (m³/d)

SOE (m³/m³), Gas Injection (e3m³/d), Well Pairs

- Pad FF startup
- Pad OO, Pad PP startup
- Turn around
- Maintenance
- Pad KK startup

Legend:
- Daily Steam Injection
- Daily Oil Production
- Daily Water Production
- ISOR
- CSOR
- Well Pairs
- Daily Gas Injection
Scheme Performance

Jackfish 3 Project Life Plot

3.1.1-7a

- Pad RR startup
- Pad K startup
- Turn around

Flow Rate (m3/d)

SOR (m3/m3), Well Pairs

- Daily Steam Injection
- Daily Oil Production
- Daily Water Production
- ISOR
- CSOR
- Well Pairs
Devon manages injection pressures to maximize producing rates, manage leak-off and increase overall reservoir recovery. A reduction in operating pressure was implemented in 2013 and continued into 2018.
Scheme Performance

Jackfish 2 Bottom Hole Injector Pressures

3.1.1-7b

[Graph showing pressure data with annotations for 'Turn around' and 'Maintenance' events, along with color-coded lines for different pads.]
Scheme Performance

Jackfish 3 Bottom Hole Injector Pressures

3.1.1-7b

Chart showing the pressure trends for different pads over time. The chart highlights a significant change or "turn around" in the pressure data. The x-axis represents time from August 2014 to December 2018, while the y-axis represents pressure in kPa.
2018 Scheme Performance

Jackfish 1 Pad Recoveries

3.1.1-7c

<table>
<thead>
<tr>
<th>Pad</th>
<th>Area (m²)</th>
<th>Avg. GRV Pay (m)</th>
<th>Net GRV Pay S₀ (%)</th>
<th>Net GRV Pay Porosity (%)</th>
<th>OBIP (10⁶m³)</th>
<th>Ult Rec (10⁶m³)</th>
<th>Cum Prod ¹ (10⁶m³)</th>
<th>RF (%) to Date ¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>529,788</td>
<td>42</td>
<td>80</td>
<td>33</td>
<td>6.0</td>
<td>4.6</td>
<td>4.4</td>
<td>73</td>
</tr>
<tr>
<td>B</td>
<td>532,736</td>
<td>44</td>
<td>75</td>
<td>34</td>
<td>5.9</td>
<td>3.5</td>
<td>2.4</td>
<td>41</td>
</tr>
<tr>
<td>C</td>
<td>530,374</td>
<td>42</td>
<td>78</td>
<td>34</td>
<td>6.0</td>
<td>2.9</td>
<td>2.7</td>
<td>45</td>
</tr>
<tr>
<td>D</td>
<td>531,192</td>
<td>46</td>
<td>79</td>
<td>34</td>
<td>6.6</td>
<td>2.8</td>
<td>2.4</td>
<td>36</td>
</tr>
<tr>
<td>E</td>
<td>603,919</td>
<td>43</td>
<td>74</td>
<td>34</td>
<td>6.4</td>
<td>3.2</td>
<td>2.2</td>
<td>34</td>
</tr>
<tr>
<td>F</td>
<td>675,933</td>
<td>37</td>
<td>77</td>
<td>34</td>
<td>6.6</td>
<td>3.8</td>
<td>0.8</td>
<td>12</td>
</tr>
<tr>
<td>G</td>
<td>525,388</td>
<td>34</td>
<td>80</td>
<td>34</td>
<td>4.8</td>
<td>1.9</td>
<td>0.4</td>
<td>8</td>
</tr>
<tr>
<td>H</td>
<td>530,352</td>
<td>34</td>
<td>70</td>
<td>33</td>
<td>4.2</td>
<td>1.6</td>
<td>1.5</td>
<td>36</td>
</tr>
<tr>
<td>I</td>
<td>530,093</td>
<td>36</td>
<td>76</td>
<td>34</td>
<td>4.8</td>
<td>2.2</td>
<td>1.0</td>
<td>21</td>
</tr>
<tr>
<td>O</td>
<td>509,016</td>
<td>30</td>
<td>75</td>
<td>34</td>
<td>3.9</td>
<td>1.8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>R</td>
<td>587,459</td>
<td>36</td>
<td>75</td>
<td>34</td>
<td>5.3</td>
<td>1.8</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

¹ Effective August 31/2018
2018 Scheme Performance

Jackfish 2 Pad Recoveries

3.1.1-7c

<table>
<thead>
<tr>
<th>Pad</th>
<th>Area (m²)</th>
<th>Avg. GRV Pay (m)</th>
<th>Net GRV Pay S₀ (%)</th>
<th>Net GRV Pay Porosity (%)</th>
<th>OBIP (10⁶m³)</th>
<th>Ult Rec (10⁶m³)</th>
<th>Cum Prod ¹ (10⁶m³)</th>
<th>RF (%) to Date ¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>501,959</td>
<td>32</td>
<td>78</td>
<td>34</td>
<td>4.3</td>
<td>2.4</td>
<td>1.5</td>
<td>35</td>
</tr>
<tr>
<td>BB</td>
<td>505,867</td>
<td>46</td>
<td>77</td>
<td>34</td>
<td>6.0</td>
<td>4.3</td>
<td>3.4</td>
<td>57</td>
</tr>
<tr>
<td>CC</td>
<td>506,800</td>
<td>38</td>
<td>74</td>
<td>34</td>
<td>4.8</td>
<td>1.6</td>
<td>0.7</td>
<td>17</td>
</tr>
<tr>
<td>DD</td>
<td>506,799</td>
<td>39</td>
<td>76</td>
<td>34</td>
<td>5.1</td>
<td>1.9</td>
<td>0.9</td>
<td>18</td>
</tr>
<tr>
<td>FF</td>
<td>653,895</td>
<td>32</td>
<td>76</td>
<td>34</td>
<td>5.4</td>
<td>2.6</td>
<td>1.4</td>
<td>26</td>
</tr>
<tr>
<td>KK</td>
<td>506,801</td>
<td>31</td>
<td>77</td>
<td>34</td>
<td>4.1</td>
<td>1.2</td>
<td>0.9</td>
<td>22</td>
</tr>
<tr>
<td>OO</td>
<td>573,574</td>
<td>40</td>
<td>82</td>
<td>34</td>
<td>6.4</td>
<td>4.0</td>
<td>1.1</td>
<td>17</td>
</tr>
<tr>
<td>PP</td>
<td>802,652</td>
<td>31</td>
<td>81</td>
<td>35</td>
<td>7.0</td>
<td>4.0</td>
<td>1.8</td>
<td>26</td>
</tr>
</tbody>
</table>

¹ Effective August 31/2018
2018 Scheme Performance

Jackfish 3 Pad Recoveries

3.1.1-7c

<table>
<thead>
<tr>
<th>Pad</th>
<th>Area (m²)</th>
<th>Avg. GRV Pay (m)</th>
<th>Net GRV Pay S₀ (%)</th>
<th>Net GRV Pay Porosity (%)</th>
<th>OBIP (10⁶m³)</th>
<th>Ult Rec (10⁶m³)</th>
<th>Cum Prod ¹ (10⁶m³)</th>
<th>RF (%) to Date ¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>530,754</td>
<td>38</td>
<td>71</td>
<td>34</td>
<td>4.9</td>
<td>2.3</td>
<td>0.8</td>
<td>16</td>
</tr>
<tr>
<td>K</td>
<td>671,303</td>
<td>46</td>
<td>84</td>
<td>34</td>
<td>8.8</td>
<td>5.4</td>
<td>2.6</td>
<td>30</td>
</tr>
<tr>
<td>EE</td>
<td>506,800</td>
<td>47</td>
<td>76</td>
<td>33</td>
<td>6.1</td>
<td>3.8</td>
<td>1.7</td>
<td>28</td>
</tr>
<tr>
<td>RR</td>
<td>724,014</td>
<td>34</td>
<td>80</td>
<td>34</td>
<td>6.7</td>
<td>2.4</td>
<td>1.4</td>
<td>21</td>
</tr>
<tr>
<td>VV</td>
<td>558,761</td>
<td>44</td>
<td>75</td>
<td>34</td>
<td>6.2</td>
<td>3.3</td>
<td>1.5</td>
<td>24</td>
</tr>
<tr>
<td>EEE</td>
<td>1,00,1409</td>
<td>33</td>
<td>75</td>
<td>34</td>
<td>8.4</td>
<td>3.6</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

¹ Effective August 31/2018
Jackfish 2 - Pad DD Highlights

Low Performer

3.1.1-7c

• First steam occurred in June 2011
• NCG injection commenced as of March 2016 on wells DD1, DD3, DD5, and DD6
• Heterogeneous reservoir with low mid-heel ceiling of ~5m pay thickness
 • Limited vertical steam chamber growth
 • Regions of poor temperature conformance
• Inflow Control Device installed in September 2013 (DD2)
• Inflow Control Device installed in November 2014 (DD7)
• Potential fluid interaction with Pad AA due to chamber growth on DD1-DD3 wells
Pad DD Toe Observation Well Temp

(10.5m from DD3 well pair)

3.1.1-7c
Jackfish 3 - Pad EE Highlights

Medium Performer

3.1.1-7c

- First steam occurred in July 2014
- Seven well pairs in operation
- Production currently in plateau phase
- Wells EE1 – EE5 have clean sand with uniform ceiling
- Wells EE6 – EE7 have low ceiling at toe of wells
- Steam subs opened on EE1 – EE5 in 2015 to increase steam injection rates
- Pad SOR historical average between 2.0 – 2.5
- EE exhibiting signs of transition into decline
Pad EE Performance

Jackfish 3 Pad EE Life Plot

3.1.1-7c

![Graph showing Pad EE Performance]

- Daily Steam Injection
- Daily Oil Production
- Daily Water Production
- ISOR
- CSOR
- Well Pairs
Pad EE Heel Observation Well Temp

(4.8m from EE5 well pair)

3.1.1-7c
Jackfish 3 - Pad K Highlights

High Performer

3.1.1-7c

- First steam occurred in February 2015
- Ten well pairs are in operation
- Best performing pad at Jackfish 3
- Clean sand throughout all ten well pairs
- Historical SOR < 2
- Pad K starting to exhibit signs of potential decline
Pad K Performance

Jackfish 3 Pad K Life Plot

3.1.1-7c
Pad K Toe Observation Well Temp

(9.5m from K5 well pair)

3.1.1-7c
Five Year Outlook

Jackfish Pad Abandonments

3.1.1-7c

- No anticipated pad abandonments at Jackfish within the next five years
Wellhead Steam Quality

3.1.1-7d

<table>
<thead>
<tr>
<th></th>
<th>Pressure (kPag)</th>
<th>Temperature (°C)</th>
<th>Quality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Gate</td>
<td>9,600</td>
<td>311</td>
<td>100%</td>
</tr>
<tr>
<td>JF1 Wellhead</td>
<td>2,500-3,700*</td>
<td>226-246</td>
<td>97%</td>
</tr>
<tr>
<td>JF2 Wellhead</td>
<td>2,500-4,400*</td>
<td>226-256</td>
<td>97%</td>
</tr>
<tr>
<td>JF3 Wellhead</td>
<td>2,500-4,400*</td>
<td>226-256</td>
<td>97%</td>
</tr>
</tbody>
</table>

* Maximum injection pressure for each facility in line with MOP

- Losses in steam quality occur as steam is transported to the pads
- Utilize condensate traps at each pad to maximize wellhead steam quality
NCG Co-Injection

3.1.1-7e, g

• Overview
 • NCG source is fuel gas, primarily composed of methane
 • 6 Pads online: B, C, D, DD, KK & FF

• Learnings to date:
 • NCG injection rates within expected range (1 – 4 mole%, per pad)
 • NCG successful in maintaining chamber pressure with reduced steam
 • No negative impact to resource recovery observed in late life NCG co-injection
 • Improved SOR observed

• Go Forward Plan
 • 10 new Pads planned to be available for co-injection by end of 2019
 • Continuing to monitor and evaluate NCG performance
Steam Additive Update

3.1.1-7e, g

• Overview
 • Additive (water-oil mutual solvent) is co-injected with steam
 • First stage of the testing will evaluate the impact of the product in the CPF
 • Additive co-injection was implemented as follows:
 • OO3 well pair initiated on May 13, 2018
 • OO5 well pair initiated on June 4, 2018
 • Injecting ~11.0-18.0 e3m3/month gas equivalent

• Learnings to date
 • No noticeable impact to fluid treatment and separation in the CPF

• Go-Forward Plan
 • Continue to evaluate well performance and potential impact on CPF
Jackfish Performance

Key Learnings

3.1.1-7f

- District SOR improvements tied to pressure reduction and optimization
- Maintained focus on pressure balance with the aquifer is beneficial
- Successful use of NCG enables steam transfer to higher quality pads
Future Plans

Section 3.1.1-8
Future Plans

Well Operations, Drilling, and Trials

3.1.1-8a, b

Jackfish 1
• Pad EX – SAGD completions planned Q1 2019

Jackfish 2
• Pad MM – SAGD drilling planned Q3 2018
• Pad TT – SAGD drilling planned Q2 2019
• Pad XX – SAGD drilling planned Q3 2019

Jackfish 3
• Pad OOO SAGD drilling planned Q2 2019
Future Plans

Jackfish District Steam Strategy

3.1.1-8c

Jackfish 1
- Utilizing steam capacity while managing SOR through steam allocation, execution of NCG co-injection, and continuing to balanced chamber pressures with aquifer

Jackfish 2
- Utilizing steam capacity while managing SOR through steam allocation, pressure management, and leveraging NCG co-injection across asset

Jackfish 3
- Utilizing steam capacity while managing SOR through steam allocation, pressure management, and leveraging NCG co-injection across asset
Surface Operations
Facilities

Section 3.1.2-1
Facilities

Plot Plan – Jackfish 1

3.1.2-1a
Facilities

Plot Plan – Jackfish 3

3.1.2-1a
Facilities

Plant Schematic

3.1.2-1b

[Diagram of a plant schematic with various labeled components such as Topsoil Storage, Stormwater Retention Pond, Inlet Separation & Oil Treating, Control Room & Warehouse, Steam Generation, Boiler Feed Water Tank, Hot Lime Softener, Water Recycling & Treatment, De-Oiled Produced Water Tank, Process Tanks, Area 2000, Area 3000, Area 4000, Diluent Storage, Bitumen Storage, Flare Stack, Sewage Lagoon, and other labeled parts of the plant.]
Facilities Performance

Section 3.1.2-2
Facilities Performance

3.1.2-2a-c

Turnarounds/Outages
• Jackfish 1 maintenance turnaround completed June 2018

Bitumen Treatment
• Stable operation production rates at J2/J3

Water Treatment
• Utilized brackish water wells with TDS ranging from 4,000-22,000 ppm for all make up water requirements
• Addition of 4th LSF at Jackfish 2, and Jackfish 3

Steam Generation
• 80% overall steam quality targeted to decrease blowdown disposal volumes and increase steam generation
Facilities Performance

Power Consumption

3.1.2-2d

Power consumption was low in May-July 2018 for planned maintenance turnaround
Flared Gas Volume

3.1.2-2e

Flare volumes include produced gas only. Volumes are aligned with MARP reporting requirements for Jackfish.

- J1: May/June – Maintenance Turnaround
- J2: July/August – Process upsets
- J3: April – Gas boot compressor maintenance

Devon notified the AER of all events as per Directive 60
Facilities Performance

Vented Gas Volume

- **J1**: August – Plant trip, process upset
- **J2**: May/July – VRU Trips

Devon notified the AER of all events as per Directive 60
Facilities Performance

Solution Gas Recovery

3.1.2-2e

- J1: June – Lower gas recovery due to turnaround gas flaring events
Facilities Performance

Fuel Gas Consumption

3.1.2-2e

Fuel Gas Consumption J1

- J1: May/June – Volumes lower due to planned maintenance turnaround
Facilities Performance

Fuel Gas Consumption

Fuel Gas Consumption J2

Monthly Volume (e³m³)

- Purchased Gas
- Produced Gas

Facilities Performance

Fuel Gas Consumption

3.1.2-2e

Fuel Gas Consumption J3

[Bar chart showing monthly fuel gas consumption for J3 from Sep 2017 to Aug 2018, with purchased gas represented in blue and produced gas in orange.]
Facilities Performance

Greenhouse Gas Emissions (GHG)

3.1.2-2f

- J1: June/July – Volumes lower due to planned maintenance turnaround
Measurement and Reporting

Section 3.1.2-3
Well Bitumen / Water Production

- The total battery production is allocated to each SAGD producing well based on individual well tests

- Battery Bitumen Production = Dispositions – Receipts + ∆Inventory + Blending Shrinkage

- Battery Water Production = Inlet Produced Water + ∆Inventory + Truck Out – Truck in – Desand Water to Treater and FWKO

- Individual well test:
 - Each pad equipped with test separator along with coriolis meter and watercut analyzer on liquid leg
 - Vortex meter for gas measurement / water vapor calculation
 - Tested water volume includes the calculated water vapor (from \(\frac{P_{\text{sat}}}{P_{\text{measured}}} \))
 - Typical well test duration is nine hours
Well Gas Production

- Well estimated test gas production = GOR x test bitumen production
- Battery Gas Production = Fuel + Fuel to IF + Flare – TCPL Purchase – Receipt Gas – Diluent Flash
- Battery gas is allocated to each well based on well test

Steam Injection

- Total steam to field measured downstream of HP separators minus the steam condensate
 - Alternate steam determination in place at J2 and J3
- Vortex meters at each wellhead are used to allocate the total steam
Measurement and Reporting

Proration Factors

3.1.2-3a, b

Bitumen / Water Proration Factor

• Typically within AER target tolerances on an ongoing basis
• Jackfish 1 extended facility outage June / July 2018
• Jackfish 1 bitumen proration being monitored by Devon
3.1.2-3d

Plant Gate Steam Metering with Bypass

- Replacement meters (dual path ultrasonic) installed in Q3-2018 – in service Q4-2018
Water Production, Injection, and Uses
Section 3.1.2-4
Water Disposal Operations

Basal McMurray Pressure in 75-6W4, 75-7W4

3.1.2-4a
Water Usage - Brackish

3.1.2-4a

- Brackish source water produced from the Grand Rapids ‘C’ and McMurray zones
- Available for Jackfish 1, Jackfish 2, and Jackfish 3
- Two McMurray Wells:
 - F1/07-30-075-06W4
 - F1/03-15-075-06W4
- Six Grand Rapid Wells:
 - F1/12-15-075-06W4
 - F1/15-15-075-06W4
 - F1/03-10-075-06W4
 - F1/03-11-075-06W4
 - F1/04-16-075-06W4
 - F1/05-17-075-06W4
Source Water Geology

Grand Rapids C Aquifer

3.1.2-4a
Brackish water production from the Grand Rapids ‘C’ commenced on July 12/2007 and McMurray commenced on October 2/2014

Brackish water quality analyzed 1-2 times per year
J1 produced water was low in June/July 2018 due to a planned maintenance turnaround.
Steam Injection Volume

3.1.2-4d

Steam Injection

- J1 steam injection was low in June/July 2018 due to a planned maintenance turnaround
3.1.2-4e

- Only brackish water is used for required makeup volumes
- Jackfish disposal limit = 12 - 15%

\[\text{Disp} \% = \frac{(\text{Brackish Water} \times D_b) + (\text{Produced Water} \times D_p)}{(\text{Brackish Water} + \text{Produced Water})} \times 100\% \]
Disposal System is shared between Jackfish 1, 2, and 3

- Two disposal streams:
 - Blowdown and regen waste
- Fourteen Class 1b disposal wells in total:
 - Twelve active (see list below)
 - One inactive (102/12-05-076-06W4)
 - One suspended (102/03-22-075-06W4)
- Approved MWIP of 6,000 kPa (July 2009)
- Jackfish 1 disposal wells:
 - 00, 02, and 03/09-14-075-06W4 (blowdown)
 - 00 and 02/12-14-075-06W4 (regen)
- Jackfish 2 disposal wells:
 - 02 and 03/07-13-075-06W4 (blowdown)
 - 02 and 04/12-15-075-06W4 (regen)
- Jackfish 3 disposal wells:
 - 00 and 02/05-12-075-06W4 (blowdown)
 - 00/03-22-075-06W4 (regen)
Water Disposal – Approval No. 10790

Volume Summary

3.1.2-4h

Blowdown Water Volumes

Regen Water Volumes

Monthly Volume (m³)

[Charts showing monthly volumes for Blowdown and Regen Water Volumes for J1, J2, and J3]
Water Disposal – Approval No. 10790

00/09-14-075-06W4

3.1.2-4h

00/09-14-075-06W4 BD Disposal Well
MWIP 6,000 KPag

<table>
<thead>
<tr>
<th>Month</th>
<th>Monthly Volume (m³)</th>
<th>Average Wellhead Pressure (KPag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep-17</td>
<td>32000</td>
<td>6000</td>
</tr>
<tr>
<td>Oct-17</td>
<td>39000</td>
<td>5500</td>
</tr>
<tr>
<td>Nov-17</td>
<td>32000</td>
<td>6000</td>
</tr>
<tr>
<td>Dec-17</td>
<td>31000</td>
<td>5500</td>
</tr>
<tr>
<td>Jan-18</td>
<td>31000</td>
<td>5500</td>
</tr>
<tr>
<td>Feb-18</td>
<td>31000</td>
<td>5500</td>
</tr>
<tr>
<td>Mar-18</td>
<td>31000</td>
<td>5500</td>
</tr>
<tr>
<td>Apr-18</td>
<td>40000</td>
<td>6000</td>
</tr>
<tr>
<td>May-18</td>
<td>31000</td>
<td>5500</td>
</tr>
<tr>
<td>Jun-18</td>
<td>10000</td>
<td>5000</td>
</tr>
<tr>
<td>Jul-18</td>
<td>31000</td>
<td>5500</td>
</tr>
<tr>
<td>Aug-18</td>
<td>39000</td>
<td>5500</td>
</tr>
</tbody>
</table>
Water Disposal – Approval No. 10790

02/09-14-075-06W4

3.1.2-4h

02/09-14-075-06W4 BD Disposal Well
MWIP 6,000 KPag

Average Wellhead Pressure (KPag)

Monthly Volume (m³)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- Monthly Volumes
- Average Wellhead Pressure
Water Disposal – Approval No. 10790

03/09-14-075-06W4

3.1.2-4h

03/09-14-075-06W4 BD Disposal Well
MWIP 6,000 KPag

Average Wellhead Pressure

Monthly Volume (m³)

January 2000 to January 2000

- Monthly Volumes
- Average Wellhead Pressure
Water Disposal – Approval No. 10790

02/07-13-075-06W4

3.1.2-4h

02/07-13-075-06W4 BD Disposal Well
MWIP 6,000 KPag

Monthly Volumes
Average Wellhead Pressure

<table>
<thead>
<tr>
<th>Month</th>
<th>Volume (m^3)</th>
<th>Pressure (KPag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep-17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oct-17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nov-17</td>
<td>15,000</td>
<td>0</td>
</tr>
<tr>
<td>Dec-17</td>
<td>5,000</td>
<td>0</td>
</tr>
<tr>
<td>Jan-18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Feb-18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mar-18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Apr-18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May-18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jun-18</td>
<td>40,000</td>
<td>0</td>
</tr>
<tr>
<td>Jul-18</td>
<td>10,000</td>
<td>0</td>
</tr>
<tr>
<td>Aug-18</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Water Disposal – Approval No. 10790

03/07-13-075-06W4

3.1.2-4h

03/07-13-075-06W4 BD Disposal Well
MWIP 6,000 KPag

Average Wellhead Pressure (KPag)

Monthly Volume (m³)

Monthly Volumes

Average Wellhead Pressure
Water Disposal – Approval No. 10790

00/12-14-075-06W4

3.1.2-4h

00/12-14-075-06W4 Regen Disposal Well
MWIP 6,000 KPag

Average Wellhead Pressure (KPag)

Monthly Volumes (m³)

- Sep-17
- Oct-17
- Nov-17
- Dec-17
- Jan-18
- Feb-18
- Mar-18
- Apr-18
- May-18
- Jun-18
- Jul-18
- Aug-18

Average Wellhead Pressure

Monthly Volumes

- Monthly Volumes
- Average Wellhead Pressure
Water Disposal – Approval No. 10790

02/12-14-075-06W4

3.1.2-4h

02/12-14-075-06W4 Regen Disposal Well
MWIP 6,000 KPag

Average Wellhead Pressure

Monthly Volumes
Water Disposal – Approval No. 10790

02/12-15-075-06W4

3.1.2-4h

02/12-15-075-06W4 Regen Disposal Well
MWIP 6,000 KPag

Average Wellhead Pressure

Monthly Volume (m³)

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000

Average Wellhead Pressure (KPag)

Monthly Volumes

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000

Average Wellhead Pressure

Monthly Volumes

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000

Average Wellhead Pressure

Monthly Volumes

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000

Average Wellhead Pressure

Monthly Volumes

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000

Average Wellhead Pressure

Monthly Volumes

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000

Average Wellhead Pressure

Monthly Volumes

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000
Water Disposal – Approval No. 10790

04/12-15-075-06W4

3.1.2-4h

04/12-15-075-06W4 Regen Disposal Well
MWIP 6,000 KPag

Monthly Volume (m³)

Average Wellhead Pressure (KPag)

- Monthly Volumes
- Average Wellhead Pressure

00/05-12-075-06W4 BD Disposal Well
MWIP 6,000 KPag

Monthly Volumes
Average Wellhead Pressure (KPag)

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000

0 10000 20000 30000 40000 50000 60000

Monthly Volume (m3)

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000

Average Wellhead Pressure (KPag)

Monthly Volumes
Average Wellhead Pressure
Water Disposal – Approval No. 10790

02/05-12-075-06W4

3.1.2-4h

02/05-12-075-06W4 BD Disposal Well
MWIP 6,000 KPag

Average Wellhead Pressure (KPag)

Monthly Volume (m³)

Monthly Volumes

Average Wellhead Pressure

- Monthly Volumes
- Average Wellhead Pressure
Water Disposal – Approval No. 10790

00/03-22-075-06W4

3.1.2-4h

00/03-22-075-06W4 Regen Disposal Well
MWIP 6,000 KPag

![Graph showing average wellhead pressure and monthly volumes from Sep-17 to Aug-18. The graph includes a line for average wellhead pressure and bars for monthly volumes.]
Off-site Water Disposal Volumes

Disposal Facility Volume Injected (m^3)

<table>
<thead>
<tr>
<th>Disposal Facility</th>
<th>Volume Injected (m^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tervita Lindbergh Cavern Facility</td>
<td>2,225</td>
</tr>
<tr>
<td>Cancen New Serepta</td>
<td>4,431</td>
</tr>
<tr>
<td>Tervita Ft. McMurray</td>
<td>2,634</td>
</tr>
<tr>
<td>CEIBA ATHABASCA</td>
<td>615</td>
</tr>
<tr>
<td>White Swan Atmore</td>
<td>3,568</td>
</tr>
<tr>
<td>White Swan Conklin</td>
<td>24,932</td>
</tr>
<tr>
<td>Cancen Morinville</td>
<td>1,326</td>
</tr>
<tr>
<td>Total</td>
<td>39,731</td>
</tr>
</tbody>
</table>
Sulphur Production and Air Emissions
Section 3.1.2-5
Sulphur Production

Operations with Sulphur Recovery

3.1.2-5a (i) and (ii)

Jackfish 2 Sulphur Recovery

* Jackfish 1 - Sulphur recovery is not required as inlet Sulphur content is <1t/d.
Sulphur Production

Operations with Sulphur Recovery

3.1.2-5a (i) and (ii)

Jackfish 3 Sulphur Recovery

Sulphur recovery not required

<table>
<thead>
<tr>
<th>Date</th>
<th>Daily Recovery</th>
<th>Quarterly Average Recovery</th>
<th>Required Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-Sep-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-Oct-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-Dec-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-Feb-18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28-Mar-18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-May-18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-Jul-18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-Aug-18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.1.2-5c

Sulphur Production

Peak Daily and Rolling Averages – SO_2 Emissions

Notes:

- The ID 2001-03 waiver was used in March due to maintenance related process upsets.
- Emissions throughout year remained below allowable emissions limits permitted during maintenance outages.
- All reporting required under the EPEA approval has been completed.
Ambient Air Quality Monitoring

3.1.2-5d

Passive air monitoring
- At minimum there are four passive stations located at each Jackfish site to monitor sulphur dioxide and hydrogen sulphide.
- Monitored parameters: sulphur dioxide and hydrogen sulphide.

Continuous ambient monitoring
- September 2018: Jackfish 1 and Jackfish 2/3 continuous monitoring stations joined the Wood Buffalo Environmental Associations (WBEA)’s integrated monitoring network. The monitoring stations are now operated by WBEA, on behalf of Devon.
- Monitored parameters: sulphur dioxide, hydrogen sulphide, nitrogen dioxide, total hydrocarbons, wind speed, and direction.

All ambient air quality monitoring and reporting requirements were satisfactorily met in 2017-2018.
Ambient Air Quality Monitoring

3.1.2-5d
Ambient Air Quality Monitoring

Jackfish 1 Results

3.1.2-5d

Jackfish 1 Ambient Monitoring

NO2, SO2, THC Hourly Maximum

- NO2 (ppb)
- SO2 (ppb)
- THC (ppm)
- NO2 AAAQO (ppb)
- SO2 AAAQO (ppb)

H2S Hourly Maximum

- H2S (ppb)
- H2S AAAQO (ppb)
Ambient Air Quality Monitoring

Jackfish 2/3 Results

3.1.2-5d

Jackfish 2/3 Ambient Monitoring
NO2, SO2, THC Hourly Maximum

<table>
<thead>
<tr>
<th>Ambient Concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO2 (ppb)</td>
</tr>
<tr>
<td>SO2 (ppb)</td>
</tr>
<tr>
<td>THC (ppm)</td>
</tr>
<tr>
<td>NO2 AAAQO (ppb)</td>
</tr>
<tr>
<td>SO2 AAAQO (ppb)</td>
</tr>
</tbody>
</table>

Jackfish 2/3 Ambient Monitoring
H2S Hourly Maximum

<table>
<thead>
<tr>
<th>Ambient Concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2S (ppb)</td>
</tr>
<tr>
<td>H2S AAAQO (ppb)</td>
</tr>
</tbody>
</table>

[Graphs showing ambient concentrations over time for NO2, SO2, THC, and H2S]
Environmental Issues

Section 3.1.2-6
Environmental Issues

3.1.2-6a

- Jackfish 1 CPF Action Leakage Rate (ALR) exceedance
 - Voluntary self-disclosure exceedance was reported to the AER.
 - Devon repaired liner and ALR has since been maintained within allowable limits.
AER Regulatory Approval Summary

D78 Amendments – September 2017 to August 2018

<table>
<thead>
<tr>
<th>Amendment</th>
<th>Date</th>
<th>Approval Number</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jackfish Scheme Capacity Increase</td>
<td>October 10, 2017</td>
<td>10097NN</td>
<td>2</td>
</tr>
<tr>
<td>Jackfish Expansion Area</td>
<td>Under Review</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Jackfish 2 Pad MM Proposal</td>
<td>November 20, 2017</td>
<td>10097OO</td>
<td>2</td>
</tr>
<tr>
<td>Jackfish 2 Pad TT Proposal</td>
<td>November 20, 2017</td>
<td>10097OO</td>
<td>2</td>
</tr>
<tr>
<td>Jackfish NCG Co-Injection</td>
<td>December 19, 2017</td>
<td>10097PP</td>
<td>2</td>
</tr>
<tr>
<td>Jackfish Sulphur Recovery Variance</td>
<td>January 11, 2018</td>
<td>10097QQ</td>
<td>2</td>
</tr>
<tr>
<td>Pad OO Steam Additive Pilot</td>
<td>April 6, 2018</td>
<td>10097RR</td>
<td>2</td>
</tr>
<tr>
<td>Jackfish 2 Pad MM – Additional Well Pair</td>
<td>July 30, 2018</td>
<td>10097SS</td>
<td>2</td>
</tr>
<tr>
<td>Pad OOO Proposal</td>
<td>Under Review</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Pad S Proposal</td>
<td>Under Review</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
AER Regulatory Approval Summary

3.1.2-6b

D56 Facilities Licences
- Temporary waiver for D56 Sulphur Emission Limit:
 - Jackfish 3 CPF (F44113)
- Amendment to the continuous emission rates at:
 - Jackfish 3 CPF (F44113)
AER Regulatory Approval Summary

Jackfish Class II Landfill

<table>
<thead>
<tr>
<th>Date Issued</th>
<th>Approval To:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov 17, 2017</td>
<td>• One time approval to accept OSE waste from the Jackfish East & West Project Areas</td>
</tr>
<tr>
<td>Nov 28, 2017</td>
<td>• One time approval to accept contaminated soil from the Devon NE Gas Project Area</td>
</tr>
</tbody>
</table>
| Jun 21, 2018 | • One time approval to accept contaminated soil from the Devon NE Gas Project Area
• One time approval to accept contaminated soil from NE Gas Compressor Facility at 02-04-078-06 W4M
• One time approval to accept contaminated soil from Devon Pike Yard at NW-09-075-06 W4M |
| Aug 22, 2018 | • One time approval to accept contaminated soil from NE Gas lease at 08-29-076-06 W4M |
AER Regulatory Approval Summary

Jackfish District

3.1.2-6b

EPEA Operating Approval No. 00224816-01-00

- EPEA renewal received July 2018

Water Diversion Licences

- No amendments
AER Regulatory Reporting Requirements

3.1.2-6c

- Industrial Wastewater and Industrial Runoff Report
- Groundwater Monitoring Report
- Wetland and Waterbody Monitoring Report
- Potable Water Monitoring Report
- Air Monitoring Report
- Soil Management Report
- Soil Monitoring Report
- Conservation and Reclamation Annual Report
- Project Level Conservation and Closure Plan
- Wildlife Mitigation and Monitoring Program
- Caribou Mitigation and Monitoring Program
Water Management

Jackfish 1, 2, and 3

Groundwater

- Jackfish 1, 2, and 3 groundwater monitoring twice yearly at CPF, well pads, and tank farm as per EPEA approval

- No significant impacts observed to date

- Minor issues to date include:
 - Slightly elevated chlorides due to de-icing agents and dust suppressants
 - Trace hydrocarbons identified at a single well downgradient of Jackfish 2.

Wetlands

- Wetland monitoring sites were surveyed in Q2 and Q3 2018

- No significant impacts observed to date
Soil Monitoring and Soil Management

Jackfish 1, 2, and 3

3.1.2-6c

• District soil monitoring program for Jackfish 1, 2, and 3 was executed in August 2017
 • District soil monitoring report and soil management program proposal submitted to AER November 2017
 • Execution of the soil management program to occur Fall 2018
Environmental Monitoring and Progress

Wildlife Monitoring

3.1.2-6c

• As per EPEA approval condition, Devon’s Jackfish Wildlife Monitoring Program was authorized in July 2012
• First comprehensive wildlife report was submitted July 2015
• Long term monitoring ongoing
• No significant project related impacts observed to date
Regional and Other Initiatives

3.1.2-6d

- Christina Lake Regional Water Management Agreement (CLRWMMA)
- Canada’s Oil Sands Innovation Alliance (COSIA)
- Alberta Biodiversity Monitoring Institute (ABMI)
- Regional Aquatics Monitoring Program (RAMP)
- Monitoring Avian Productivity and Survivorship (MAPS Program)
- Regional Industry Caribou Collaboration (RICC)
- Clean Air Strategic Alliance (CASA)
- Wood Buffalo Environmental Association (WBEA)
- Oil Sands Environmental Monitoring Program (OSM)
Other Environmental Initiatives

Canada’s Oil Sands Innovation Alliance (COSIA)

• Devon is an active participant of the Water, Land, and greenhouse gas (GHG) Environmental Priority Areas (EPAs) and the COSIA Monitoring Working Group

• Aspirations for each EPA have been developed and Devon is striving to:
 • GHG: Produce oil with lower GHG emissions than other sources of oil
 • Land: Be world leaders in land management, restoring the land and preserving biodiversity of plants and animals
 • Water: Be world leaders in water management, producing Canadian energy with no adverse impact on water

• Devon is either leading or participating in Joint Industry Projects in each of the EPAs
Other Environmental Initiatives

3.1.2-6d

Monitoring Avian Productivity and Survivorship (MAPS Program)
- Continued annual support (technical and financial) of the MAPS Program
- This program analyzes the influence of industry throughout NE Alberta on productivity and survivorship of migratory birds

Regional Industry Caribou Collaboration (RICC)
- Devon is leading a consortium of organizations in implementing a collaborative caribou conservation program for the Cold Lake Range, which includes the Jackfish and Pike areas
- This program focuses on:
 - Managing and reducing industry’s footprint
 - Monitoring wildlife use of linear features
 - Identifying effective techniques to reduce wolf and bear movements throughout the caribou habitat
Regulatory Compliance

Section 3.1.2-7, -8
Devon Canada Corporation believes the Jackfish Project is in compliance with AER approvals and regulatory requirements. As of August 31/2018, Devon has no unaddressed non-compliant events.
The following list summarizes spills reported to the AER within the reporting period.

<table>
<thead>
<tr>
<th>Site</th>
<th>No. of Reportable Spills</th>
<th>Volume Released (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jackfish 1</td>
<td>9</td>
<td>6.6</td>
</tr>
<tr>
<td>Jackfish 2</td>
<td>2</td>
<td>0.12</td>
</tr>
<tr>
<td>Jackfish 3</td>
<td>4</td>
<td>8.5</td>
</tr>
</tbody>
</table>
The following list summarizes non-compliant events within the reporting period. For all events corrective actions were identified and tracked to completion.

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 2017</td>
<td>Notice of Noncompliance (4) re: Failure to submit RASTER/LASS well logs.</td>
<td>Devon submitted required information.</td>
</tr>
<tr>
<td>December 2017</td>
<td>Notice of Noncompliance re: Failure to meet D-13 suspension requirements.</td>
<td>Well was recompleted and reactivated in Q1 2018.</td>
</tr>
</tbody>
</table>
Future Plans

Section 3.1.2-9

Surface Operations

3.1.2-9a, b, c, d

Jackfish 1
- Soda ash injection into HLS is starting up to reduce regen waste disposal volumes
- CPF modifications in preparation for ESP conversion

Jackfish 2
- Plant maintenance turnaround planned for 2019
- Soda ash injection into HLS is starting up to reduce regen waste disposal volumes

Jackfish 3
- Soda ash injection into HLS is starting up to reduce regen waste disposal volumes
Thank you.