Air injection and displacement for recovery with oil horizontal (AIDROH) project

Approval #11618
Performance presentation
Advisory

This document contains forward-looking information prepared and submitted pursuant to the Alberta Energy Regulator’s requirements and is not intended to be relied upon for the purpose of making investment decisions, including without limitation, to purchase, hold or sell any securities of Cenovus Energy Inc. Additional information regarding Cenovus Energy Inc. is available at cenovus.com.
AIDROH* introduction and overview

This presentation was prepared in accordance with AER Directive 054 - Performance presentations, auditing, and surveillance of in-situ oil sands schemes

Subsurface issues related to resource evaluation and recovery
 • Directive 054, Section 3.1.1

Surface operations, compliance, and issues not related to resource evaluation and recovery
 • Directive 054, Section 3.1.2
AER Directive 054 Section 3.1.1

Subsurface issues related to resource evaluation and recovery
Subsurface issues: table of contents

- Background
- Geology/geoscience
- Drilling and completion
- Artificial lift
- Instrumentation
- Scheme performance
- Future plans
Scheme background

Subsurface section 1
Background

The AIDROH project uses gravity drainage as a bitumen recovery process to recover bitumen that has been passively heated by the Cenovus EnCAID combustion project.
Geological/geoscience

Subsurface section 2
Summary of reservoir properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth</td>
<td>465m TVD</td>
</tr>
<tr>
<td>Thickness</td>
<td>25-30m</td>
</tr>
<tr>
<td>Average porosity</td>
<td>35%</td>
</tr>
<tr>
<td>Average bitumen saturation</td>
<td>65%</td>
</tr>
<tr>
<td>Average permeability</td>
<td>1,350mD</td>
</tr>
<tr>
<td>Oil viscosity @ 13C</td>
<td>~25,000 cP</td>
</tr>
<tr>
<td>@ 60C</td>
<td>~600 cP</td>
</tr>
<tr>
<td>API oil gravity</td>
<td>10.3 - 10.8</td>
</tr>
</tbody>
</table>
Wabiskaw bitumen thickness

Type log cut offs:-
- <75 api gamma ray
- >=20 ohm resistivity
- >=27% porosity

© 2019 Cenovus Energy Inc.
March 18, 2019
Wabiskaw structural map

103/5-10 Post-burn well
104/5-10 Hz production well
102/5-10 Pre-burn OB well
100/5-10 Injection well
Wabiskaw stratigraphic cross-section

A

A'

WBSK D Valley Fill

WBSK B Valley Fill

Regional WBSK

MCMR

Bottom water

WBSK B VF

Depositional Edge
Horizontal production well 104/5-10

Producer drilled 15m below G/B interface:
- avoid hitting concretion
- avoid missing heated zone

Learnings:
- drill lower to optimize reserves recovery

Drilled in 2011 east of injector well at surface location 6-10
300m of horizontal leg landed 30m north of injector well and
~15m into heated zone
Drilling and completion

Subsurface section 3
Well layout

Drilled 103/5-10-73-6W4 post burn vertical well September 2011
- Drilled 11m northwest of 102/5-10-73-6W4
- Successfully cored 44m from top Wabiskaw to top of McMurray – no lot core
 - extensive core and oil analysis program completed
 - core routine core analysis, SEM, XRD
 - oil API, viscosity, composition

Drilled 104/5-10-73-6W4 horizontal producer well September 2011
- Drilled 300m east-west horizontal section, landed 30m north of 100/5-10-73-6W4 injector well and 15m below Wabiskaw gas/bitumen interface
- Well equipped with 20 thermocouples in horizontal length
Completion

Installed tail pipe to toe

• divert hot crude to toe
• encourage warming near toe

Requirements under subsection 3.1.1 3c – wellbore schematics are included in the appendix
Artificial lift

Subsurface section 4
Artificial lift technology information

- Progressive cavity pump (PCP), temperature tolerance of elastomer 150°C
- Lift capacity range: 34-50 m³/D
- Operating temperature range 44°C to 108°C
Artificial lift performance

No production activity during 2018 reporting period

• Well suspended on February 13, 2015
Instrumentation

Subsurface section 5
Instrumentation in wells

104/05-10-73-6W4/00
 • Equipped with 20 thermocouples

Requirements under subsection 3.1.1 5a – wellbore schematics 5c and 5d are included in the appendix
Thermocouple temperature vs. depth
Scheme performance

Subsurface section 7
Production history

No production activity during 2018 reporting period
Heated oil volume

Calculated using analytical geometry-based method

Combustion front heats bitumen by conduction in the shape of a sphere cap

- Thermally affected radius ~ 290m

Chemically affected

- 64,000m3

Thermal affected*

- 750,000m3

* Based on horizontal well depth 15m below gas/bitumen interface
Historical oil quality

Original oil ~45,000 cP at reservoir conditions (dead)

No oil quality analysis undertaken during 2018 reporting period
No production activity during 2018 reporting period
Subsurface key learnings

No production activity during 2018 reporting period

EnCAID conductive heating effects observed following suspension of well operations from 2015

- TC 1-5 ~17°C temperature increase
- TC 6-11 ~20°C temperature increase
- TC 12-15 ~11°C temperature increase
Future plans

Subsurface section 8
Future plans

Cenovus divested the AIDROH well and facilities effective September 2018. Cenovus plans to cancel the scheme approval for AIDROH.
AER Directive 054 Section 3.1.2

Surface operations, compliance and issues not related to resource evaluation and recovery
Surface operations: table of contents

- Facility overview/modifications
- Measurement and reporting
- Water, water disposal well and landfill waste
- Sulphur production
- Environmental issues
- Compliance statement
- Non-compliance discussion
- Future plans
Facilities Overview

Surface section 1
Site layout
Process flow schematic

No changes to facility or process undertaken during 2018 reporting period
Facility performance 2018

No production activity during 2018 reporting period
 • Suspended facility February, 2015
Gas usage

No gas usage activity during 2018 reporting period
Greenhouse gas emissions

No production operations or gas usage activity during 2018 reporting period
Measurement and reporting

Surface section 2
Measurement reporting

Field operations take daily tank readings, enter into daily tracking

Field operations enter truck tickets into EC: total fluid volume with known average BSW

Gas (vent, fuel, casing gas) meters loaded to EC via SCADA system

Receiving BSW from Foster Creek labs

Daily AIDROH tracking spreadsheet

EC

Production Accounting Activities
1) BSW cuts are determined based on the Foster Creek labs analysis results. These are entered into EC.
2) Production is determined based on closing inventory-open inventory receipts + dispositional.
3) Battery production and gas meter reports from EC used to create PRA uploaded file.
4) PRA submission is completed.

© 2019 Cenovus Energy Inc. March 18, 2019
Water, water disposal and landfill waste

Surface section 5
Water and waste disposal

No production operations during 2018 reporting period

• No processing occurred at the site
• No produced water
Sulphur production

Surface section 6
Sulphur production

No production operations during 2018 reporting period
Environmental issues

Surface section 7
Environmental issues

No environmental issues related to the AIDROH occurred in 2018
Compliance statement

Surface section 8
Compliance confirmation

No non-compliance events related to the AIDROH occurred in 2018
Non-compliance discussion

Surface section 9
Non-compliance confirmation

No non-compliance events related to the AIDROH occurred in 2018
Future plans

Surface section 10
Future plans

Cenovus divested the AIDROH well and facilities effective September 2018. Cenovus plans to cancel the scheme approval for AIDROH.
Appendix
Wellbore schematic