WEST ELLS SAGD

Scheme No. 11764G
AER In Situ Performance Presentation
June 5, 2019
Table of Contents

1. Overview
2. Geoscience
3. Drilling and Completions
4. Subsurface and Scheme Performance
5. Facilities
6. Regulatory and Compliance
7. Future Plans
Location within the Athabasca Oilsands Deposit

West Ells SAGD Project
Located in the NW part of the Athabasca Oilsands Deposit, Alberta, Canada

http://osip.alberta.ca/map/
West Ells SAGD

• Covering 9,856 contiguous gross hectares in the Athabasca Oil Sands Region
• Two phases of 5,000bbl/d
 • Phase 1 currently in Operation since September 2015 is supplied by Pad 2
 • Phase 2 will commence in the future and is supplied by Pad 3 which has already been drilled
• MSL 112941 and MSL 112933 were cleared of vegetation with no soil disturbance, anticipated to serve as make-up pads as the project advances
Development and Project Area

<table>
<thead>
<tr>
<th>Area</th>
<th>Land Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development Area</td>
<td>T94 R17W4; Sec 30, 31</td>
</tr>
<tr>
<td>(4 sections)</td>
<td>T94 R18W4; Sec 25, 36</td>
</tr>
<tr>
<td>Project Area</td>
<td>T94 R17W4; Sec 30, 31, 32, 33</td>
</tr>
<tr>
<td>(6 sections)</td>
<td>T94 R18W4; Sec 25, 36</td>
</tr>
</tbody>
</table>

First Steam – September 2015
First Production – December 2015
Geoscience
West Ells Depositional Model

Modern Analog: Korea

The Wabiskaw sands are laterally extensive and were deposited along the emergent Devonian highs as the Boreal Sea transgressed over the Athabasca Basin.
Isopach Map (Clearwater Marker to Devonian)

“Paleotopographic” map

- Reflects paleotopography during the Late Cretaceous
- Warm colors represent valleys and cooler colors represent highs
- Major McMurray drainage systems are marked with a dashed line
- Extensive amalgamated shoreface sands (Wabiskaw A, C, & D) were deposited on the east side of the emergent Devonian strata

West Ells SAGD Project is located in an embayment in T94 R17 W4M.
Stratigraphic Chart & Type Well

The SAGD wells are located at the base of the Wabiskaw D sand unit.

Type Well – OB41 (102/06-31-094-17W4)

The SAGD wells are located at the base of the Wabiskaw D sand unit.
Average Reservoir Properties for Development Area

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitumen saturation (%)</td>
<td>71</td>
</tr>
<tr>
<td>Porosity (%)</td>
<td>33</td>
</tr>
<tr>
<td>Grain size</td>
<td>Fine to medium</td>
</tr>
<tr>
<td>Net pay (m)</td>
<td>15.2</td>
</tr>
<tr>
<td>Horizontal perm. (D)</td>
<td>2.4</td>
</tr>
<tr>
<td>Vertical perm. (D)</td>
<td>1.7</td>
</tr>
<tr>
<td>Reservoir pressure (kpa)</td>
<td>600</td>
</tr>
<tr>
<td>Reservoir temperature (°C)</td>
<td>9</td>
</tr>
<tr>
<td>Reservoir depth (m TVD)</td>
<td>265</td>
</tr>
<tr>
<td>Bitumen viscosity (cp)</td>
<td>> 1 million</td>
</tr>
<tr>
<td>Well length (m)</td>
<td>800</td>
</tr>
<tr>
<td>Well spacing (m)</td>
<td>70</td>
</tr>
</tbody>
</table>
Typical SAGD Well Placement (e.g. Pair 8)

Wells are placed at the base of the Wabiskaw D unit. The producer well was positioned above the underlying mud unit by using a deep resistivity geosteering tool that detected the proximity of the bed boundary while drilling.

Top 261.6 m
So = 78.6%
Porosity = 35.1%

Injector

kh = 3860 md
kv = 2960 md

So = 83.0%
Porosity = 34.9%

Producer
Bottom 268.75 m
Uniform gamma ray profile is indicative of a clean sandy shallow marine environment (e.g., shoreface)

- 3D seismic data shows continuity of Wabiskaw reservoir units

<table>
<thead>
<tr>
<th></th>
<th>Percent Effective Producer (GR < 60) (%)</th>
<th>Percent Effective Injector (GR < 60) (%)</th>
<th>Horizontal Well Length (m)</th>
<th>Interwell spacing (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pad 2</td>
<td>99</td>
<td>100</td>
<td>800</td>
<td>70</td>
</tr>
<tr>
<td>Pad 3</td>
<td>100</td>
<td>100</td>
<td>800</td>
<td>70</td>
</tr>
</tbody>
</table>
The elevation varies from 290 to 297 m asl.
The elevation varies from 270 to 280 m asl
The top gas ranges in thickness from 1.0 to 6.4 m and the average is 3.1 m.
The lean zone varies in thickness from 0 to 3.6 m and the average is 1.3 m.
OBIP for Pads 2 & 3 and Development Area

<table>
<thead>
<tr>
<th>Number of SAGD Well Pairs</th>
<th>Well Length (m)</th>
<th>Well Spacing (m)</th>
<th>Drainage Area 50m Boundary (10^3 m3)</th>
<th>Average Net Pay above producer (m)</th>
<th>Total OBIP (10^6 m3)</th>
<th>Cumulative Bitumen Produced* (m3)</th>
<th>Current Recovery Factor (%)</th>
<th>Estimated Recovery Factor (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pad 2</td>
<td>8</td>
<td>800</td>
<td>70</td>
<td>504</td>
<td>16.2</td>
<td>1.87</td>
<td>202,376</td>
<td>10.8</td>
</tr>
<tr>
<td>Pad 3</td>
<td>8</td>
<td>800</td>
<td>70</td>
<td>504</td>
<td>15.4</td>
<td>1.86</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Production to December 31, 2017

<table>
<thead>
<tr>
<th>Area (10^3 m3)</th>
<th>Average Net Pay (m)</th>
<th>Total OBIP (10^6 m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development Area</td>
<td>10,511</td>
<td>15.2</td>
</tr>
</tbody>
</table>

OBIP = Area x Net Pay x Porosity x Bitumen Saturation / FVF

FVF = Formation Volume Factor = 1.005
Wells with Core and Special Core Core Analysis

Development Area

LEGEND
- Core (43)
- PSD (14)
- Caprock Analysis (5)
- Bitumen Analysis (3)
- Geochemistry (1)
Composition

- Small differences in clay content and quartz is seen between WBSK C and D
 - WBSK C = 3% clay
 - WBSK D = 0.6%-1.3% clay
3D Seismic Survey and Acquisition Parameters

- No new seismic data acquired in this reporting period

Survey Layout

Acquisition Parameters

<table>
<thead>
<tr>
<th>Source Information</th>
<th>Receiver Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source interval (m)</td>
<td>20</td>
</tr>
<tr>
<td>Source interval (m)</td>
<td>20</td>
</tr>
<tr>
<td>Source line interval (m)</td>
<td>80</td>
</tr>
<tr>
<td>Source line interval (m)</td>
<td>60</td>
</tr>
<tr>
<td>Line orientation</td>
<td>N-S</td>
</tr>
<tr>
<td>Line orientation</td>
<td>W-E</td>
</tr>
<tr>
<td>Total km of line</td>
<td>167.1</td>
</tr>
<tr>
<td>Total km of line</td>
<td>194.9</td>
</tr>
<tr>
<td>Number of source points</td>
<td>7078</td>
</tr>
<tr>
<td>Number of receiver points</td>
<td>9681</td>
</tr>
<tr>
<td>Source depth (m)</td>
<td>6</td>
</tr>
<tr>
<td>Source type</td>
<td>Dynamite</td>
</tr>
</tbody>
</table>

Area 10.7 (km²)
4-D Seismic

• As measured on the observation wells, the width of the steam chamber is narrow and less than 10 m from the SAGD well pair. Therefore, Sunshine did not plan a 4D seismic acquisition survey in 2018 because it is difficult to image a small steam chamber in the seismic data.

• While there are no plans in 2019 to conduct a 4D seismic survey, Sunshine will consider a 4D seismic survey when it is appropriate and provides an advantage for resource recovery.
Cap Rock Integrity

• Mini-frac tests were performed at:
 • 1AA/14-31-094-17W4/0
 • 1AA/07-36-094-18W4/0

• Caprock average minimum stress gradient = 22 kPa/m (Wabiskaw Shale Member)

• Oil sand average minimum stress gradient = 17 kPa/m (Wabiskaw Sand)

• Sunshine applied for a maximum operating pressure (MOP) of 4400 kPag in the Wabiskaw Shale Member based on a 80% safety factor

• The maximum operating pressure (MOP) of 4400 kPag was granted on March 10, 2016
Caprock and Oil Sand from 14-31-94-17W4 Location

Caprock - Wabiskaw Shale Member

Regional Marine Shale (~ 15 m thick)

Caprock mini-frac

Oil sand mini-frac

Oil sand - Wabiskaw Sand

1AA/14-31-094-17W4/0 Well Log
Surface Heave – Corner Reflector Locations
Surface Heave Monitoring

- 52 corner reflector locations
- Baseline information gathered prior to steaming operations
- Since the start up of the wells, 30-55 mm of surface expression due to SAGD related activities has been observed at some corner reflector locations
Drilling and Completions
West Ells Pad & Well Locations

- CPF
- Pad 2 (Phase 1)
- Pad 3 (Phase 2)

- SAGD Well Pair – Drilled & Completed
- SAGD Well Pair – Drilled, liners installed, pump and instrumentation install not complete.
- Source Water Well – Drilled & Completed

West Ells SAGD 2018 Performance
Injector Well Completions

- Steam injection down long and short tubing
- Blanket gas held on intermediate casing annulus
Producer Well Completions – Circulation Phase

- Steam injection through long tubing
- Circulation returns via intermediate casing
- Blanket gas contained in short tubing
- Slotted liner in three wells
- Facsrite screen in five wells

16” surface casing
11 3/4” intermediate casing
8 5/8” liner
3.5” long tubing
7” short tubing
1.5” Instrumentation Coil

West Ells SAGD 2018 Performance
Producer Well Completions – SAGD Phase

- Electric Submersible Pumps (ESPs) installed in all SAGD producers
- Blanket gas held on short tubing and intermediate casing

![Diagram of well completion setup]

- 16” surface casing
- 11 3/4” intermediate casing
- 7” short tubing
- 3.5” production tubing
- 8 5/8” liner
- 1.5” Instrumentation Coil
- ESP (Electric Submersible Pump)
Producer Well Completions – Liner Type

- Slotted Liner – 0.012” x 0.020” RT
- Facsrite – 250 Micron
Artificial Lift

- All SAGD production wells were designed to use Electric Submersible Pumping (ESP) systems
- Designed production capacity of the ESPs is 50-720 m3/d for initial stage of operation
- Current emulsion rate varies between 80-550 m3/d
- Designed operational temperature of ESP is at 230°C
- Current operational temperature between 150-200°C
Well Instrumentation

1.5” instrumentation coils include (all wells):

- Heel and toe bubble tube – pressure
- 8 thermocouples, evenly spaced
- Fiber optic temperature (DTS or 40-point FBG)

Injector

Producer

△ Bubble Tubes (Pressure)
△ Blanket Gas (Pressure)
● Thermocouples (x8)
Observation Wells

- 7 vertical OB wells drilled on Pad 2 (Phase 1) across zone
- Each well equipped with instrument bundle cemented outside 4 ½” casing, equipped with:
 - 20 thermocouples spaced from above the cap rock to below base of pay
 - 3 piezometers in zones of interest: gas cap, mid-pay, and lower pay
Subsurface and Scheme Performance
Subsurface Performance

- All 8 well pairs are now in production mode
Injection and Production Pressure

- SAGD steam chamber still developing
- The injection pressure varied from 2000 kPa to 2400 kPa
- Producer pressure registered between 1000 kPa and 2000 kPa
- Sunshine’s near term operating strategy is to maximize steam rates to achieve and sustain a bottom hole injection pressure of around 2500 kPa
- Sunshine’s injection pressure is within approved limit of 4400 kPa
Temperature Response on Type Well (102/06-31-094-17W4)

- OB41 is 4.2 m east of Pair 12
- Oil sand with mm to cm silt/shale laminate (act as a baffle and not a barrier)
- Original reservoir temperature is 9°C
- Temperature near the injector level is about 210°C
Fluid Rates

2018 West Ells Fluid Rates

- Steam, m3/d
- Bitumen, m3/d
- Water, m3/d
- ISOR

Date

Rate, m3/d

ISOR, m3/m3

- Reaction tank repair
- ESP repair
- Turnaround
- TCPL repair
- Reaction tank cleaning
- EVAP inspection
- Lower sales nominations
 (Market conditions)
Cumulative Fluid Rate

West Ells Cumulative Fluids

- Cum Steam, m³
- Cum Bitumen, m³
- Cum Water, m³
- CSOR

Date

Cum, m³ x 1,000

CSOR, m³/m³

West Ells SAGD 2018 Performance
Recovery Patterns Pair 7 - High

P7 Production

- Average Oil Production
- Average Water
- Average Steam
- CSOR x 10
- ISOR x 10
- Cumulative Oil
- Cumulative Water
- Cumulative Steam

Date

Cumulative Volume (m³)
0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000 220000 240000 260000
Recovery Patterns Pair 10 - Medium

P10 Production

Average Oil Production
Average Water
Average Steam
CSOR x 10
ISOR x 10
Cumulative Oil
Cumulative Water
Cumulative Steam

Date
Jan-2018
Feb-2018
Mar-2018
Apr-2018
May-2018
Jun-2018
Jul-2018
Aug-2018
Sep-2018
Oct-2018
Nov-2018
Dec-2018

Cumulative Volume (m³)
Recovery Patterns Pair 5 - Low

P5 Production

- Average Oil Production
- Average Water
- Average Steam
- CSOR x 10
- ISOR x 10
- Cumulative Oil
- Cumulative Water
- Cumulative Steam

Date

Cumulative Volume (m³)

West Els SAGD 2018 Performance
Steam Strategy

- West Ells is in the early stage of the SAGD process
- Focus on even steam chamber development and maximizing efficiency
- Steam will be continually optimized in individual wells based on the steam chamber growth rate, with a target pressure of around 2500 kPa
- Once the steam chamber has reached the top of the reservoir/peak rates, the target pressure will be reviewed again
- Continue building the steam chamber and ramp up production toward nameplate capacity
Key Learnings

- A gradual production ramp-up/down plan is key to minimize a chance of experiencing water balance problems at CPF
- Better control of BS&W helps to maintain good performance of Evaporator and saves the cost of waste water disposal
- Product inventory and trucking management is crucial in case of experiencing extreme weather and poor road conditions
CPF Plot Plan

- No major facility modifications during this reporting period
Aerial Photo of CPF
CPF Process Flow Simplified
CPF Process flow

- No modifications during this reporting period
Bitumen Production

2018 Bitumen Production

[Graph showing monthly production of bitumen from January to December 2018, with two different scales: one for barrels (bbl) and one for cubic meters (m³).]
Electricity Generated

• 365 Running days
• 39.504 GWh total generated in 2018
Measurement, Accounting and Reporting Plan (MARP)

• Reporting codes associated with West Ells
 • ABBT0123666
 • ABIF0123667
 • ABWS0139258, ABWS0139259, ABWS0139260

• MARP approved August 2012
• MARP updated in 2015
• MARP Meter list revised in 2018
• No further changes or alterations made during the 2018 reporting period
Metering Schematic – Well Pads
Metering Schematic – Injection Facility
Measurement Methodology

- No changes or alteration made to measurement methodology in reporting period
- Daily oil rate of each well is calculated by multiplying the most current well emulsion rate with the manual oil cut
 - Emulsion rate is the test flow rate from the test separator and oil cut is measured manually by taking a sample of the flow
 - Due to the slugging nature of the wells and high water flow during initial production, the test separator is not fully commissioned
 - There is only one separator on the well pad and well tests generally last for 8 to 15 hours depending on the fluid rate from the well (includes time to purge the test pipeline and test vessel)
 - To properly conduct a well test, with 8 wells on a pad, only one well can be tested every 4 - 5 days
- With the total production from the pad, individual well volumes are prorated against the overall production volume
- The same philosophy and process is applied to produced water and gas
- Currently, the meters on the test separator are being verified every time by comparing the results with the manual oil cut and water
Proration of Oil and Water

Proration Factors

Oil

Water

West Ells SAGD 2018 Performance
Location of Water Source Wells

Non-Saline Water Wells

- Observation wells are located at 16-32-094-17 W4 and 10-33-094-17 W4

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Location</th>
<th>Formation</th>
<th>Maximum Rate of Diversion (m³/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSW 16-32a (1180021)</td>
<td>16-32-094-17 W4 Viking</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>WSW 16-32b (1180020)</td>
<td>16-32-094-17 W4 Viking</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>WSW 16-32c (1180019)</td>
<td>16-32-094-17 W4 Viking</td>
<td>1,400</td>
<td></td>
</tr>
<tr>
<td>WSW 14-32 (1165702)</td>
<td>14-32-094-17 W4 Viking</td>
<td>1,244</td>
<td></td>
</tr>
</tbody>
</table>
Water Source Composition

Typical Water Analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>WSW 14-32</th>
<th>WSW 16-32c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab pH</td>
<td>pH</td>
<td>7.98</td>
<td>7.91</td>
</tr>
<tr>
<td>Lab Ec</td>
<td>µS/cm</td>
<td>1240</td>
<td>908</td>
</tr>
<tr>
<td>Ca</td>
<td>mg/L</td>
<td>39.0</td>
<td>75.3</td>
</tr>
<tr>
<td>Mg</td>
<td>mg/L</td>
<td>16.1</td>
<td>21.8</td>
</tr>
<tr>
<td>Na</td>
<td>mg/L</td>
<td>197</td>
<td>81</td>
</tr>
<tr>
<td>K</td>
<td>mg/L</td>
<td>4.6</td>
<td>4.5</td>
</tr>
<tr>
<td>Cl</td>
<td>mg/L</td>
<td>3</td>
<td><1</td>
</tr>
<tr>
<td>Total Alkalinity</td>
<td>mg/L</td>
<td>490</td>
<td>370</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>mg/L</td>
<td>598</td>
<td>451</td>
</tr>
<tr>
<td>CO₃⁻</td>
<td>mg/L</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>mg/L</td>
<td>157</td>
<td>110</td>
</tr>
<tr>
<td>Hardness</td>
<td>mg/L</td>
<td>164</td>
<td>278</td>
</tr>
<tr>
<td>TDS</td>
<td>mg/L</td>
<td>711</td>
<td>514</td>
</tr>
<tr>
<td>Nitrate</td>
<td>mg/L</td>
<td><0.5</td>
<td><0.5</td>
</tr>
<tr>
<td>Iron</td>
<td>mg/L</td>
<td><0.1</td>
<td><0.1</td>
</tr>
</tbody>
</table>
Monthly Water Source Production

West Ells Water Act Licence 00316770-01-00 annual allocation is 365,000 m³

- Did not exceed the maximum daily or maximum approved diversion volume
- Did not impact the groundwater levels in the overlying Quaternary sediment
Water Disposal

- There are no approved disposal facilities or wells associated with the West Ells Project
- All water is trucked off site to approved waste management facilities in the form of Evaporator Blowdown water
- The Directive 81 disposal limit for 2018 was 5.11%
 - \[\left(\frac{\text{Fresh In} \times D_f + \text{Produced In} \times D_p}{\text{Fresh In} + \text{Produced In}}\right) \times 100\]
- West Ells has had an average disposal rate of 1.29% for 2018
 - \[\left(\frac{\text{Total Disposal}}{\text{Fresh In} + \text{Produced In}}\right) \times 100\]
- West Ells was compliant with disposal limits for the entirety of 2018
Water Disposal And Recycle Rates

Directive 081 Monthly balances

<table>
<thead>
<tr>
<th></th>
<th>January 2018</th>
<th>February 2018</th>
<th>March 2018</th>
<th>April 2018</th>
<th>May 2018</th>
<th>June 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Water In (m3)</td>
<td>88,018.20</td>
<td>63,193.20</td>
<td>69,727.80</td>
<td>73,740.10</td>
<td>67,732.30</td>
<td>87,599.60</td>
</tr>
<tr>
<td>Produced Water In (m3)</td>
<td>35,111.40</td>
<td>36,893.50</td>
<td>37,450.30</td>
<td>33,933.70</td>
<td>35,309.30</td>
<td>28,277.80</td>
</tr>
<tr>
<td>Disposal Total (m3)</td>
<td>1,370.00</td>
<td>1,427.90</td>
<td>1,519.50</td>
<td>1,425.00</td>
<td>1,308.50</td>
<td>1,655.20</td>
</tr>
<tr>
<td>Disposal Factor, Fresh Water</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Disposal Factor, Produced Water</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Disposal Limit %</td>
<td>5.00</td>
<td>5.58</td>
<td>5.45</td>
<td>5.21</td>
<td>5.40</td>
<td>4.71</td>
</tr>
<tr>
<td>Disposal Rate %</td>
<td>1.11</td>
<td>1.43</td>
<td>1.42</td>
<td>1.32</td>
<td>1.27</td>
<td>1.43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>July 2018</th>
<th>August 2018</th>
<th>September 2018</th>
<th>October 2018</th>
<th>November 2018</th>
<th>December 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh Water In (m3)</td>
<td>61,256.60</td>
<td>61,977.90</td>
<td>59,323.80</td>
<td>83,267.60</td>
<td>82,241.00</td>
<td>78,834.40</td>
</tr>
<tr>
<td>Produced Water In (m3)</td>
<td>38,814.70</td>
<td>32,784.80</td>
<td>36,613.00</td>
<td>38,162.10</td>
<td>13,136.20</td>
<td>11,276.40</td>
</tr>
<tr>
<td>Disposal Total (m3)</td>
<td>932.00</td>
<td>1,374.80</td>
<td>1,324.00</td>
<td>1,773.20</td>
<td>1,117.20</td>
<td>933.50</td>
</tr>
<tr>
<td>Disposal Factor, Fresh Water</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Disposal Factor, Produced Water</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Disposal Limit %</td>
<td>5.72</td>
<td>5.42</td>
<td>5.67</td>
<td>5.20</td>
<td>3.96</td>
<td>3.88</td>
</tr>
<tr>
<td>Disposal Rate %</td>
<td>0.93</td>
<td>1.45</td>
<td>1.38</td>
<td>1.46</td>
<td>1.17</td>
<td>1.04</td>
</tr>
</tbody>
</table>
Water Disposal Rate

2018 Water Disposal Actual Rate Versus Limit

Disposal Limit %
Disposal Rate %

Waste Water Disposal

2018 Evaporator Blowdown Water Disposal Volumes

m³

Flaring & Venting

- There were no reportable flaring events in 2018
- There was no venting in 2018
Sulphur Production

- There are no sulphur recovery facilities at West Ells

\[
\text{Total Plant SO}_2 = \text{Flared SO}_2 + \text{Steam Generator SO}_2 + \text{Co-Generation Units SO}_2
\]

2018 Sulphur Dioxide Emissions (t/d)

- Emissions (SO$_2$ t/d)
- 2018 Sulphur Dioxide Emissions (t/d)
- Total Plant Emissions t/d
- EPEA Approval Limit t/d
Regulatory and Compliance
Compliance – Monitoring Programs

Ambient Air Quality Monitoring

<table>
<thead>
<tr>
<th>Month</th>
<th>Peak SO(_2) (ppbv)</th>
<th>Peak H(_2)S (ppbv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>0.9</td>
<td>3.11</td>
</tr>
<tr>
<td>February</td>
<td>1.1</td>
<td>0.99</td>
</tr>
<tr>
<td>March</td>
<td>2.20</td>
<td>1.04</td>
</tr>
<tr>
<td>April</td>
<td>1.2</td>
<td>0.15</td>
</tr>
<tr>
<td>May</td>
<td><0.2</td>
<td>0.02</td>
</tr>
<tr>
<td>June</td>
<td>0.5</td>
<td>0.58</td>
</tr>
<tr>
<td>July</td>
<td>0.5</td>
<td>0.31</td>
</tr>
<tr>
<td>August</td>
<td>0.7</td>
<td>0.61</td>
</tr>
<tr>
<td>September</td>
<td>0.5</td>
<td>0.34</td>
</tr>
<tr>
<td>October</td>
<td>0.8</td>
<td>0.46</td>
</tr>
<tr>
<td>November</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>December</td>
<td>0.9</td>
<td>0.36</td>
</tr>
</tbody>
</table>
Compliance – Monitoring Programs

2018 Comparison of hourly mass NO\textsubscript{x} emissions to performance targets and Approval limits
Compliance – Approval Contraventions

- The following list summarizes non-compliance events for the 2018 reporting period
- There were no reportable spills or flaring events for the 2018 reporting period

<table>
<thead>
<tr>
<th>Date</th>
<th>CIC #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-Jan-18</td>
<td>334491</td>
<td>The CEMS NO$_x$ analyzer did not meet the required monthly 90% operational time for the month of January 2018.</td>
</tr>
<tr>
<td>01-Aug-18</td>
<td>341689</td>
<td>Monthly submissions of CEMS data is required to be submitted by the end of month following the month in which the data was collected. The June report was submitted on August 1, 2018, which was beyond the July 31, 2018 deadline.</td>
</tr>
<tr>
<td>17-Dec-18</td>
<td>347687</td>
<td>The 2017 Annual Water Use report was not completed, observation well water level was not measured consistently and data wasn’t consistently reported into the WUR.</td>
</tr>
<tr>
<td>29-Mar-19</td>
<td>351380</td>
<td>A manual stack survey of one of the Co-generation Units was not performed in 2018.</td>
</tr>
<tr>
<td>29-Mar-19</td>
<td>351381</td>
<td>Volumes of contained surface water released in 2018 were not consistently estimated and records do not show lab analysis results to accompany field testing of some releases. In addition, groundwater monitoring activities did not take place in 2018.</td>
</tr>
</tbody>
</table>
Compliance

Inspections

• AER Inspection of CPF and Pad 2 conducted July 18, 2018
 • Inspection completed September 6, 2018
Compliance Declaration

Sunshine fell short of required monitoring programs in 2018 and strives to be compliant with all AER approvals and regulatory requirements going forward.
Future Plans

• Solvent Surfactant Application
 • Apply for solvent surfactant approval to improve resources recovery

• Phase I (5,000 bpd)
 • Continue to fully demonstrate the reservoir productivity before advancing to Phase II

• Phase II (10,000 bpd)
 • Planning continues for the Phase II development
Sunshine Oilsands Ltd.
1100, 700 – 6th Ave SW
Calgary, AB T2P 0T8
(403) 984-1450
info@sunshineoilsands.com