Possible Actions

<table>
<thead>
<tr>
<th>AER Enhanced Production Audit Program on PETRINEX: Compliance Assessment Indicators (CAI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAI Name</td>
</tr>
<tr>
<td>Directive 017</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
The licensee or operator must use the decision tree analysis shown in figure 5 of
[Proration factor]

342

342

[Activity ID]: [activity volume] 10

363

345

611

673

364

322

341

342

[Activity ID]: [activity volume] 10

Proration factor: [proration factor]

3

requirements pertaining to economic evaluations regarding

Gas Production = [PROD volume]

[Activity ID]: [activity volume] 10

331

344

345

322

622

362

341

331

The AER's goal is to have the upstream petroleum industry continue to reduce
The AER's goal is to have the upstream petroleum industry continue to reduce

135

130

129

125

122

121
The calculated gas-oil ratio (GOR) is less than or equal to 2 m⁢³/m⁢³, Chapter 2.6.

- The variance in density between the oil produced by the wells linked to an oil battery.
- The purpose of a proration factor is to correct estimated production volumes to actual production volumes based on disposition measurements taken on the inlet of the facility. Changes in tank inventories, and receipt measurements, may affect the validity of the factors.
- Proration factors are therefore used to equitably correct all measurements for bias errors.
- Where a bias error occurs in a series of measurements, there will be no proration and all of the measurements are assumed to be in error by the same amount and in the same direction. Proration factors are therefore used to equitably correct all measurements for bias errors.
- Proration is an accounting system or procedure where the total actual monthly production is equitably distributed among wells in the battery. In this type of system, proration factors are used to correct estimated volumes to actual volumes.
- Proration factors are used to correct estimated volumes to actual volumes. The purpose of a proration factor is to correct estimated production volumes to actual production volumes based on disposition measurements taken at the inlet of the facility. Changes in tank inventories, and receipt measurements, may affect the validity of the factors.
- The calculated gas-oil ratio (GOR) is less than or equal to 5 m⁢³/m⁢³, Chapter 2.6.
- Low Gas-Oil Ratio – Oil Battery
- Low Gas-Oil Ratio – Bitumen

- The calculated gas-oil ratio (GOR) is less than or equal to 2 m⁢³/m⁢³, Chapter 2.6.
The variance in density between the fluid produced by the wells linked to a gas battery and the fluid reported as a receipt into the battery may not have been accounted for through the reporting of a metering difference.

For AER production reporting purposes, a "metering difference" is used to balance, on a monthly basis, any difference that occurs between the measured inlet/receipt volumes and the measured outlet/disposition volumes at a facility.

Blending and flashing shrinkage is reported as an "SHR" disposition of the facility.

Confirmation of applicable equipment must be based on site inspections and reporting of shrinkages due to blending of the fluid.

Pertinent data in Table 1 describe the methods used to account for metering differences in production, disposition, receipt and disposition data to the AER.
Excessive Oil Proration Factor

(1) – Oil Proration Battery

Where a bias error occurs in a series of measurements, there will be no proration factor and all of the measurements are assumed to be in error by the same amount and in the same direction. Proration factors are therefore used to uniformly correct all measurements in a series.

The purpose of a proration factor is to correct estimated production volumes to actual production volumes determined for the wells linked to the battery.

Investigate possible reasons for variances between estimated and actual oil production volumes determined for the wells linked to the battery.

Investigate possible reasons for variances between estimated and actual oil production volumes determined for the wells linked to the battery.

Investigate possible reasons for variances between estimated and actual oil production volumes determined for the wells linked to the battery.

Investigate possible reasons for variances between estimated and actual oil production volumes determined for the wells linked to the battery.

Investigate possible reasons for variances between estimated and actual oil production volumes determined for the wells linked to the battery.

Investigate possible reasons for variances between estimated and actual oil production volumes determined for the wells linked to the battery.

Investigate possible reasons for variances between estimated and actual oil production volumes determined for the wells linked to the battery.

Investigate possible reasons for variances between estimated and actual oil production volumes determined for the wells linked to the battery.

Investigate possible reasons for variances between estimated and actual oil production volumes determined for the wells linked to the battery.

Investigate possible reasons for variances between estimated and actual oil production volumes determined for the wells linked to the battery.

Investigate possible reasons for variances between estimated and actual oil production volumes determined for the wells linked to the battery.

Investigate possible reasons for variances between estimated and actual oil production volumes determined for the wells linked to the battery.

Investigate possible reasons for variances between estimated and actual oil production volumes determined for the wells linked to the battery.

Investigate possible reasons for variances between estimated and actual oil production volumes determined for the wells linked to the battery.

Investigate possible reasons for variances between estimated and actual oil production volumes determined for the wells linked to the battery.

Investigate possible reasons for variances between estimated and actual oil production volumes determined for the wells linked to the battery.

Investigate possible reasons for variances between estimated and actual oil production volumes determined for the wells linked to the battery.

Investigate possible reasons for variances between estimated and actual oil production volumes determined for the wells linked to the battery.

Investigate possible reasons for variances between estimated and actual oil production volumes determined for the wells linked to the battery.

Investigate possible reasons for variances between estimated and actual oil production volumes determined for the wells linked to the battery.

Investigate possible reasons for variances between estimated and actual oil production volumes determined for the wells linked to the battery.

Investigate possible reasons for variances between estimated and actual oil production volumes determined for the wells linked to the battery.
Proration is an accounting system or procedure where the total actual monthly production volumes are equitably distributed among wells in the battery. In this type of system, proration factors are used to correct estimated volumes to actual volumes.

Where a bias error occurs in a series of measurements, there will be no proration factors used, as all of the measurements are assumed to be in error by the same amount and in the same direction. Proration factors are therefore used to equitably correct all measurements for biased errors.

The purpose of a proration factor is to correct estimated production volumes to actual production volumes based on disposition measurements taken at the inlet and outlet of the facility. Changes in tank inventories, and receipt and related measurements, taken at the inlet of the facility.

Water proration factor deviated from unity (1.00000) by ±20% to ±50%.

E.g., (Proration factor ≥ 0.80000 and proration factor < 0.50000) or (Proration factor > 1.20000 and proration factor ≤ 1.50000).

Oil proration factor deviated from unity (1.00000) by ±35% to ±45%.

E.g., (Proration factor ≥ 0.65000 and proration factor < 0.55000) or (Proration factor > 1.35000 and proration factor ≤ 1.45000).

The purpose of a proration factor is to correct estimated production volumes to actual production volumes based on disposition measurements taken at the inlet of the facility.

E.g., (Proration factor ≥ 0.75000 and proration factor < 0.65000) or (Proration factor > 1.25000 and proration factor ≤ 1.35000).

Where a bias error occurs in a series of measurements, there will be no proration factors used, as all of the measurements are assumed to be in error by the same amount and in the same direction. Proration factors are therefore used to equitably correct all measurements for biased errors.

The purpose of a proration factor is to correct estimated production volumes to actual production volumes based on disposition measurements taken at the inlet of the facility. Changes in tank inventories, and receipt measurements, taken at the outlet of the facility.

Water proration factor deviated from unity (1.00000) by ±20% to ±50%.

E.g., (Proration factor ≥ 0.80000 and proration factor < 0.50000) or (Proration factor > 1.20000 and proration factor ≤ 1.50000).

Oil proration factor deviated from unity (1.00000) by ±35% to ±45%.

E.g., (Proration factor ≥ 0.65000 and proration factor < 0.55000) or (Proration factor > 1.35000 and proration factor ≤ 1.45000).

The purpose of a proration factor is to correct estimated production volumes to actual production volumes based on disposition measurements taken at the inlet of the facility.

E.g., (Proration factor ≥ 0.75000 and proration factor < 0.65000) or (Proration factor > 1.25000 and proration factor ≤ 1.35000).

Where a bias error occurs in a series of measurements, there will be no proration factors used, as all of the measurements are assumed to be in error by the same amount and in the same direction. Proration factors are therefore used to equitably correct all measurements for biased errors.

The purpose of a proration factor is to correct estimated production volumes to actual production volumes based on disposition measurements taken at the inlet of the facility. Changes in tank inventories, and receipt measurements, taken at the outlet of the facility.

Water proration factor deviated from unity (1.00000) by ±20% to ±50%.

E.g., (Proration factor ≥ 0.80000 and proration factor < 0.50000) or (Proration factor > 1.20000 and proration factor ≤ 1.50000).

Oil proration factor deviated from unity (1.00000) by ±35% to ±45%.

E.g., (Proration factor ≥ 0.65000 and proration factor < 0.55000) or (Proration factor > 1.35000 and proration factor ≤ 1.45000).

The purpose of a proration factor is to correct estimated production volumes to actual production volumes based on disposition measurements taken at the inlet of the facility. Changes in tank inventories, and receipt measurements, taken at the outlet of the facility.

E.g., (Proration factor ≥ 0.75000 and proration factor < 0.65000) or (Proration factor > 1.25000 and proration factor ≤ 1.35000).
<table>
<thead>
<tr>
<th>Battery</th>
<th>Excessive Water Proration Factor</th>
<th>Proration factor > 1.25000 and proration factor ≤ 1.35000</th>
<th>Proration factor ≤ 0.65000 and proration factor > 0.55000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Proration Battery</td>
<td>(2)</td>
<td>E.g., (Proration factor ≥ 0.75000 and proration factor < 0.65000) or Water proration factor deviated from unity (1.00000) by +/- 25% to +/- 35%</td>
<td>(Proration factor > 1.35000 and proration factor ≤ 1.45000) E.g., (Proration factor ≥ 0.65000 and proration factor < 0.55000) or Water proration factor deviated from unity (1.00000) by +/- 35% to +/- 45%</td>
</tr>
<tr>
<td>Oil Proration Battery</td>
<td>(3)</td>
<td>E.g., (Proration factor ≥ 0.90000 and proration factor < 0.85000) or Water proration factor deviated from unity (1.00000) by +/- 10% to +/- 15%</td>
<td>(Proration factor > 1.15000 and proration factor ≤ 1.20000) E.g., (Proration factor ≥ 0.85000 and proration factor < 0.80000) or Water proration factor deviated from unity (1.00000) by +/- 45%</td>
</tr>
<tr>
<td>Oil Proration Battery</td>
<td>(4)</td>
<td>E.g., (Proration factor ≥ 0.90000 and proration factor < 0.85000) or Water proration factor deviated from unity (1.00000) by +/- 10% to +/- 15%</td>
<td>(Proration factor > 1.15000 and proration factor ≤ 1.20000) E.g., (Proration factor ≥ 0.85000 and proration factor < 0.80000) or Water proration factor deviated from unity (1.00000) by +/- 45%</td>
</tr>
<tr>
<td>Oil Proration Battery</td>
<td>(1)</td>
<td>E.g., (Proration factor ≥ 0.75000 and proration factor < 0.65000) or Water proration factor deviated from unity (1.00000) by +/- 25% to +/- 35%</td>
<td>(Proration factor > 1.35000 and pronation factor ≤ 1.45000) E.g., (Proration factor ≥ 0.65000 and proration factor < 0.55000) or Water proration factor deviated from unity (1.00000) by +/- 35% to +/- 45%</td>
</tr>
<tr>
<td>Oil Proration Battery</td>
<td>(5)</td>
<td>E.g., (Proration factor ≥ 0.75000 and proration factor < 0.65000) or Water proration factor deviated from unity (1.00000) by +/- 25% to +/- 35%</td>
<td>(Proration factor > 1.35000 and proration factor ≤ 1.45000) E.g., (Proration factor ≥ 0.65000 and proration factor < 0.55000) or Water proration factor deviated from unity (1.00000) by +/- 35% to +/- 45%</td>
</tr>
</tbody>
</table>

The purpose of a proration factor is to correct estimated production volumes to actual production volumes. In this context, the facility battery production is equally distributed among wells in the battery. In this type of system, proration factors are used to correct estimated volumes to actual volumes.

Proration is an accounting system or procedure where the total actual monthly production volumes are equally distributed among wells in the battery. In this type of system, proration factors are used to correct estimated volumes to actual volumes.

The purpose of a proration factor is to correct estimated production volumes to actual production volumes. In this context, the facility battery production is equally distributed among wells in the battery. In this type of system, proration factors are used to correct estimated volumes to actual volumes.

The purpose of a proration factor is to correct estimated production volumes to actual production volumes. In this context, the facility battery production is equally distributed among wells in the battery. In this type of system, proration factors are used to correct estimated volumes to actual volumes.

Where a bias error occurs in a series of measurements, there will be no measurements and all of the measurements are assumed to be in error by the same amount and in the same direction. Proration factors are therefore used to equitably correct all measurements for biased errors.

Where a bias error occurs in a series of measurements, there will be no measurements and all of the measurements are assumed to be in error by the same amount and in the same direction. Proration factors are therefore used to equitably correct all measurements for biased errors.
Anomalies in the accounting systems or procedures where the control period monthly production is equitably distributed among wells in the battery. In this type of system, proration factors are used to correct estimated volumes to actual volumes.

When a beta error occurs as a result of measurement, there will be no production and all of the measurements are rounded to the nearest 0.0000 by the same count and the same decision. Proration factors are therefore used to equally correct measurement for beta errors.

The purpose of a proration factor in a control established production column is to avoid production column based on disposition measurements taken in the state of the facility. Changes in tank accuracies, and input measurements, shall be noted in the state of the facility.

Anomalies in the accuracy of the proration column.

Failure to report produced gas volumes will result in:

- Fuel usage is zero.
- Gas production not reported at well level for
- Oil production not reported at well level for
- Proration factor: [proration factor] > [tolerance value low].
- Water proration factor deviated from unity (1.00000) by +/- 15% to +/- 25%.
- Water proration factor deviated from unity (1.00000) by +/- 10% for a Custom Treating Facility.
- Water proration factor reported for a facility deviated from unity (1.00000) by (SHUT IN) are excluded.
- Water proration factor reported for non-prorated battery (VME0036).
- Water proration factor deviated from unity (1.00000) by (SHR), Metering Difference (DIFF), Imbalance (IMBAL), and Shut In (LDINVOP/LDINVCL), Inventory Adjustment (INVADJ), Load/Unload (LDINVU/LDINVL), and hand book [reference value low].
- Water proration factor deviated from unity (1.00000) by +/- 15% to +/- 25% for a Custom Treating Facility.